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Abstract

In this paper we study homotopical properties of a special neighborhood system, which is denoted by {Uε}ε>0, for the canonical
embedding of a compact metric space in its upper semifinite hyperspace to get results in the shape theory for compacta. We also
point out that there are spaces with the shape of finite discrete spaces and having not the homotopy type of any T1-space
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us denote by 2X the hyperspace of non-empty closed sets with the upper semifinite topology.
In this paper we want to show how a non-T1 topology in hyperspaces, the upper semifinite topology, can be used

to study and reformulate some geometrical aspects of the topology of compact metric spaces. Our point of view
is to consider the canonical copy of a compactum X inside the upper semifinite hyperspace (denoted by 2X). This
hyperspace is highly non-Hausdorff, in fact 2X is a compactification of X, being X also a compact space. In a previous
paper [2] the authors describe some properties of 2X when X is a normal Hausdorff space.

All along this paper when we refer to the upper semifinite hyperspace 2X it is meant that X is a compact metric
space.

We begin Section 2 considering a compact metric space (X,d) and establishing that the family U = {Uε}ε>0 is a
base of open neighborhoods of the canonical copy of X inside 2X , where Uε = {C ∈ 2X | diam(C) < ε} and diam
represents the diameter function for the metric d . This was first proved in [1] for the hyperspace 2X

H with the Vietoris
topology, induced by the Hausdorff metric related to d . Later on we prove that 2X is an absolute extensor for the class
of compact metric spaces (in the sense of [6, p. 35]). We finish this section giving a homotopy extension property
for 2X .
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In Section 3 we study some shape and homotopy properties of the open sets Uε , with ε > 0. In fact we prove
that the least upper bound of the cardinal of the image of any continuous function from Uε to any T1-space is an
integer which determines the shape of Uε . One of the main results obtained in this section is that the upper semifinite
hyperspace can be used to detect the shape morphism induced by a map. As a consequence we point out one of the
main differences between shape and homotopy for topological spaces: While each Uε has the shape of some discrete
finite space, some of them have not the homotopy type of any T1-space. On the other hand K. Morita [9] proved that
each topological space has the same shape of some Tychonov space.

In the last section we use the hyperspace, with the upper semifinite topology to reinterpret Sanjurjo’s description
of shape of compact metric space [10] and, at the same time, we obtain that upper semifinite hyperspaces are as good
ambient spaces as the Hilbert cube (used by K. Borsuk in [5]) to define shape theory.

We have to say that in [3, pp. 2784–2785] there are some results which are weakly related to a minor part of this
paper.

The authors thank the referee whose suggestions improved an earlier version of this paper

2. Extension properties in upper semifinite hyperspaces of compacta

Suppose that (X,d) is a compact metric space and consider the hyperspace 2X of non-empty closed sets with
the upper semifinite topology. Given an open subset U ⊂ X we define BU = {C ∈ 2X | C ⊂ U}. Then the family
B = {BU }U∈T is a base for the upper semifinite topology on 2X . Also we have that if C ∈ 2X then {C} = {D ∈ 2X |
C ⊂ D}. We can identify, topologically, (X,d) with the subspace φ(X) ⊂ 2X , where

φ :X −→ 2X,

x �−→ {x}
is the so-called canonical embedding.

The following result will be very useful and widely used along the paper.

Proposition 1. Let (X,d) be a compact metric space. Then the family U = {Uε}ε>0 is a base of open neighborhoods
of X inside 2X , where Uε = {C ∈ 2X | diam(C) < ε}. Consequently {U1/n}n∈N is countable base.

Proof. Obviously X ⊂ Uε , for all ε > 0. Firstly we are going to prove that Uε is an open neighborhood of X for each
ε > 0.

Let C ∈ Uε with diam(C) = r < ε. Consider B(C, ε−r
2 ) = {x ∈ X: d(x,C) < ε−r

2 } and take the open neighborhood
BB(C, ε−r

2 ) of C in 2X . Let D ∈ BB(C, ε−r
2 ) and p,p′ ∈ D. Then we have

d(p,p′) � d(p,C) + d(p′,C) + diam(C) < ε,

so D ∈ Uε and hence BB(C, ε−r
2 ) ⊂ Uε.

Take now an open set U ⊂ 2X with X (≡ φ(X)) ⊂ U. For each x ∈ X choose εx > 0 such that Vx = BB(x,εx) ⊂ U .
Choose a Lebesgue number β > 0 for the open cover {Vx : x ∈ X}. Then for each x ∈ X, B(B(x,β)) ⊂ U.

Consider Uβ = {C ∈ 2X | diam(C) < β}, fix C ∈ Uβ and c ∈ C. Then C ∈ BB(c,β) ⊂ BB(x,εx), for some x ∈ X.
Consequently, Uβ ⊂ U. �
Proposition 2. Let X be a compact metric space. Then 2X is an absolute extensor for the class of compact metric
space.

Proof. Let (Y, d ′) be a compact metric space and A ⊂ Y a closed set of Y. For each y ∈ Y we define the set Ay =
{a ∈ A | d ′(a, y) = d ′(y,A)}. Let {an}n∈N ⊂ Ay be a convergent sequence with limn→∞ an = a0 ∈ A. Since
d ′(an, y) = d ′(A,y) for all n ∈ N, it follows that d ′(y,A) = limn→∞ d ′(y, an) = d ′(y, a0). Consequently a0 ∈ Ay,

and so Ay is a closed subset of A.

Consider the upper semifinite hyperspace 2A. We define the function g :Y → 2A by g(y) = Ay. Suppose g is
not continuous at y0 ∈ Y . Consider B(Ay0 , ε) = {a ∈ A | d ′(a,Ay0) < ε} an open neighborhood of Ay0 in A, so
{BB(Ay0 ,ε)}ε>0 is a base for the point Ay0 in 2A and take B = {B(y0, εn) | limn→∞ εn = 0} a base for the point y0 in Y .
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Then there exists ε0 > 0 such that g(B(y0, εn)) 
⊂ BB(Ay0 ,ε0) for any εn > 0. For each n ∈ N we choose yn ∈ B(y0, εn)

such that g(yn) 
⊂ BB(Ay0 ,ε). So it follows that for each n ∈ N there exists bn ∈ g(yn) such that d ′(bn,Ay0) � ε0

and d ′(yn, bn) = d ′(yn,A). The sequence {bn}n∈N has a convergent subsequence, we denote it again by {bn}n∈N.

Suppose that limn→∞ bn = b. Since limn→∞ d ′(bn,Ay0) = d ′(b,Ay0) � ε0 and d ′(y0,A) � d ′(y0, bn) � d ′(y0, yn)+
d ′(yn, bn) then we have d(y0,A) � d(y0, b) � d(y0,A). Therefore b ∈ Ay0 , which is impossible.

Let f :A → 2X, be a continuous function and let C ∈ 2A. We shall show that
⋃

y∈C f (y) is a closed set in X. Let
{xn}n∈N ⊂ ⋃

y∈C f (y) be a convergent sequence in X. So for each n ∈ N, there exists yn ∈ C such that xn ∈ f (yn).

Then the sequence {yn}n∈N ⊂ C contains a subsequence, we denote it again by {yn}n∈N ⊂ C, which converges to
y0 ∈ C. Take now BB(y0,ε) ⊂ 2X . By continuity of f it follows that there exists n0 ∈ N such that f (yn) ∈ BB(y0,ε) for
every n � n0. Consequently d(x0, f (x0)) < ε for every ε > 0 and then x0 ∈ f (y0). So

⋃
y∈C f (y) ∈ 2X .

Define the function h : 2A → 2X by h(C) = ⋃
y∈C f (y). Let BV be an open neighborhood of h(C) in 2X . Evidently

Bf −1(BV ) is open in 2A. Then we have C ⊂ f −1(h(C)) ⊂ f −1(BV ) and so C ∈ Bf −1(BV ). Take now D ∈ Bf −1(BV ).

Then for each d ∈ D it follows that f (d) ∈ BV and so h(D) ∈ BV . Therefore h(Bf −1(BV )) ⊂ BV and we conclude
that h is a continuous function.

Finally we define the map f ∗ :Y → 2X by f ∗ = h ◦ g, which is a continuous extension of f . �
The next theorem describes a kind of homotopy extension property and is, in some sense, similar to the Borsuk’s

Homotopy Extension Theorem for ANRs (see [4] or [6, Chapter IV]). First of all from the last proof we can extract
the following:

Lemma 3. Let Z and T be compact metric spaces and suppose that h :Z → 2T is a continuous function. For every
C ∈ 2Z ,

⋃
c∈C f (c) ∈ 2T and h∗ : 2Z → 2T given by h∗(C) = ⋃

c∈C f (c), is continuous.

In the next result we use the construction Uε for two metric spaces X and Y , so we will denote them by Uε(X) and
Uε(Y ), respectively.

Theorem 4. Let X, Y be two compact metric spaces. Suppose that H :X × I → 2Y and h: 2X → 2Y are continuous
functions such that H(x,0) = h|X({x}). Then there exists a continuous function H̃ : 2X × I → 2Y with the following
properties:

(i) H̃ (C,0) = h(C) for all C ∈ 2X.

(ii) H̃|X×I
= H.

(iii) H̃ is continuous.
(iv) If H(x, t) ∈ Uε(Y ) for all (x, t) ∈ X × I, then we can choose δ > 0 such that H̃ (Uδ(X) × I ) ⊂ Uε(Y ).

Proof. First of all there is a natural topological embedding of 2X × I into 2X×I given by (C, t) �→ C × {t} for any
C ∈ 2X and t ∈ I . Using the previous lemma we have the continuous extension H ∗ : 2X×I → 2Y of H .

We define the function H̃ : 2X × I → 2Y by

H̃ (C, t) =
{

h(C) if t = 0,

H ∗(C × {t}) if t > 0.

By the hypotheses we have that H̃ is well defined and satisfies the properties (i)–(ii). Let us show that H̃ also
satisfies (iii)–(iv).

(iii) We need only to prove continuity at (C,0). Let BV be a basic neighborhood of H̃ (C,0) = h(C) in 2Y . Since
h is continuous, there exists a basic neighborhood BU of C in 2X such that h(BU) ⊂ BV . In particular h({c}) ∈ BU

for each c ∈ C. Moreover H is also continuous and H(c,0) = h({c}), then we have that for each c ∈ C there exists an
open neighborhood Uc ×[0, εc) of (c,0) in X × I such that H(Uc ×[0, εc)) ⊂ BV . We can also suppose that Uc ⊂ U

for all c ∈ C. Since {Uc | c ∈ C} is an open cover of C, then we can suppose that {Uci
| i ∈ {1, . . . , k}} is a finite

subcover. Let ε = min{εci
| i ∈ {1, . . . , k}} and Ũ = (

⋃k
i=1 Uci

). Take the open subset BŨ × [0, ε) of 2X × I. Using
the definition of H ∗ we easily see that H̃ (BŨ × [0, ε)) ⊂ BV .
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(iv) Let A be an open neighborhood of X × I in 2X × I. For all (x, t) ∈ X × I there exists an open neighborhood
B(U(x,t)) × (t − εt , t + εt ) of (x0, t) in 2X × I such that B(U(x,t)) × (t − εt , t + εt ) ⊂A. Since I is compact, then for

each x0 ∈ X there exist t1, t2, . . . , tk ∈ I such that I ⊂ ⋃k
j=1(tj − εtj , tj + εtj ).

Let Ux0 = ⋂k
j=1 U(x0,tj ) then Ux0 is open and x0 ∈ Ux0 . From compactness of X take a finite subcover

{Ux1 ,Ux2 , . . . ,Uxn}. Hence B(
⋃n

i=1Uxi
) is an open neighborhood of X, the canonical copy, in 2X . Thus there exists

δ > 0 such that X ⊂ Uδ(X) ⊂ B(
⋃n

i=1Uxi
). Consequently

X × I ⊂ Uδ(X) × I ⊂ (B(
⋃n

i=1Uxi
)) × I ⊂A.

Now the proof follows applying the above paragraph to A= H̃−1(Uε(Y )). �
3. Homotopy and shape properties of Uε

We shall prove some homotopy and shape properties of Uε . First, let us recall some definitions which will be used
throughout this section.

Let (X,d) be a compact metric space. U denotes an open partition of X, a covering formed by disjoint sets, and
P(X) denotes the set of all open partitions of X. Since X is compact we get that any open partition is a finite cover.
Recall that a partition U1 ∈ P(X) is a refinement of another partition U2 ∈ P(X), and it is denoted by U1 > U2, if for
every element U1

i ∈ U1 there exists an element U2
j ∈ U2 such that U1

i ⊂ U2
j .

For each ε > 0 we define the set Pε(X) = {U ∈ P(X) | {B(x, ε)}x∈X is a refinement of U}. Obviously U = {X} ∈
Pε(X) and since {B(x, ε)}x∈X admits a finite subcover of X, there exists Nε ∈ N such that Nε is the minimum number
of balls needed to cover X. Hence sup{Card{U} | U ∈Pε(X)} � Nε and so there exists n0(ε) ∈ N such that

n0(ε) = max
U∈Pε(X)

{
Card(U)

}
.

Theorem 5. Let Y be a T1-space and let X be a compact metric space. If f :Uε → Y is a continuous map then

Card
(
f (Uε)

)
� max
U∈Pε(X)

(
Card(U)

) = n0(ε).

Moreover there exists a T1-space Y and a continuous map f :Uε → Y such that Card(f (Uε)) = n0(ε).

Remark 6. Note that if X is connected then n0(ε) = 1 for every ε > 0 and hence the only continuous maps from Uε

to a T1-space are the constant maps.

Proof. First of all we are going to show that for every ε > 0 and every continuous map f :Uε → Y , with Y a T1-space,
one has that Card(f (Uε)) is finite

Suppose that ε > 0 and the map f are fixed. Since {B(x, ε/4)}x∈X is an open cover of X, then there exist
x1, x2, . . . , xn ∈ X such that {Bc(xi, ε/4)}i=1,...,n is a finite covering of X, where Bc represents the closed ball. Ob-
serve that Bc(xi, ε/4) ∈ Uε for all i = 1, . . . , n.

Consider D ∈ Uε. For each y ∈ D there exists i ∈ {1, . . . , n} such that y ∈ Bc(xi, ε/4). Then we have {xi, y} ∈ Uε ,
{xi, y} ∈ {xi} and {xi, y} ∈ {y}. Since f is continuous, it follows that f ({xi, y}) ∈ f ({xi}) ⊂ f ({xi}) = f ({xi})
and f ({xi, y}) ∈ f ({y}) ⊂ f ({y}) = f ({y}). This implies that f ({y}) = f ({xi}). Since D ∈ {y} it follows that
f (D) = f ({xi}) since D ∈ Uε,f (D) ∈ {f ({x1}), . . . , f ({xn})}. Consequently, f (Uε) ⊆ {f ({x1}), . . . , f ({xn})} and
thus, Card(f (Uε)) � n.

Now we are going to show that Card(f (Uε)) � n0(ε). Suppose on the contrary that there exists a continuous map
f :Uε → Y such that Card(f (Uε)) = m > n0(ε). Denote by Img(f (Uε)) = {a1, . . . , am} the image of f. Therefore
{f −1(ai) | i ∈ {1, . . . ,m}} is an open partition of Uε and so, since Uε ⊂ 2X

U , we can suppose that

f −1(ai) =
⋃
j∈Ji

B
V

j
i

⊂ B
(
⋃

j∈Ji
V

j
i )

for all i ∈ {1, . . . ,m}.

We claim that V = {⋃j∈J1
V

j

1 , . . . ,
⋃

j∈Jm
V

j
m} is an open partition of X. If this is not true, there exist p,q ∈

{1, . . . ,m} and x ∈ X such that x ∈ (
⋃

j∈Jq
V

j
q ) ∩ (

⋃
j∈Jp

V
j
p ). Then there exit j1 ∈ Jq and j2 ∈ Jp such that x ∈ V

j1
q
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and x ∈ V
j2
p , hence {x} ∈ (

⋃
j∈Jq

B
(V

j
q )

)∩(
⋃

j∈Jp
B

(V
j
p )

) which is a contradiction. Moreover we have {B(x, ε)}x∈X is a

refinement of V . To see this let x0 ∈ X and x ∈ B(x0, ε). Obviously C = {x0, x} ⊂ Uε and, since C ∈ {x0} and C ∈ {x},
then there exist p,q ∈ {1, . . . ,m} such that f (C) ∈ f ({x0}) ⊂ f ({x0}) = {ap} and f (C) ∈ f ({x}) ⊂ f ({x}) = {aq}.
Consequently p = q. So f (x0) = f (x) for all x ∈ B(x0, ε) and it follows that there exists s ∈ {1, . . . ,m} such that
B(x0, ε) ⊂ ⋃

j∈Js
V

j
s . As a result we have that V = {⋃j∈J1

V
j

1 , . . . ,
⋃

j∈Jm
V

j
m} ∈ Pε(X) and that Card(V) = m >

n0(ε) = maxU∈Pε(X)(Card(U)) which is not possible. This proves that Card(f (Uε)) � n0(ε).

Now we are going to construct a continuous map f :Uε → Y such that Card(f (Uε)) = n0(ε). Let Y =
{1, . . . , n0(ε)}. Let U0 ∈ Pε(X) such that U0 = {U1

0 ,U2
0 , . . . ,Un0(ε)

0 }. Define the map f :X → {1, . . . , n0(ε)} by

f (x) = i, if x ∈ U i
0. For each C ∈ Uε, there exists only one Up

0 ∈ U0 ∈ Pε(X) such that C ⊂ Up

0 . Thus f :X →
{1, . . . , n0(ε)} is extendable over Uε as

f̂ :Uε −→ {
1,2, . . . , n0(ε)

}
,

C −→ f̂ (C) = i

where i ∈ {1,2, . . . , n0(ε)} is such that C ∈ U i
0.

As we proved in [2], the map 2f : 2X → 2{1,...,n0(ε)} is continuous and obviously f̂ = 2f |Uε . Consequently f̂ is

continuous and Card(f̂ (Uε)) = n0(ε). �
In order to describe the shape of Uε , we need the following result on shape theory (see [7,8]).

Theorem 7. Let X, Y be topological spaces and suppose that f :X → Y is a continuous function. Then the map f

induces a shape equivalence if only if for any ANR, P , and any homotopy class [h] ∈ [Y,P ], where h :Y → P is a
map, we have that the assignment

[h] �⇒ [h ◦ f ]
where [h ◦ f ] ∈ [X,P ], induces a bijection between the corresponding sets of homotopy classes of maps.

Now we can prove

Theorem 8. Let X be a compact metric space. For every ε > 0, Uε has the shape of the discrete space {1, . . . , n0(ε)}.

Proof. Let P be an ANR and suppose that fε :Uε → {1, . . . , n0(ε)} is an onto continuous function. First of all, let us
prove that for every continuous map g :Uε → P we can construct a continuous map h : {1, . . . , n0(ε)} → P such that
g = h ◦ fε.

Note that Card(g(Uε)) = q � n0(ε). Suppose that the image of g is {a1, . . . , aq}. Since fε :Uε → {1, . . . , n0(ε)}
and g :Uε → P are continuous functions we have two partitions of Uε given by

Uε =
q⋃

i=1

Vi with Vi = g−1(ai) for every i ∈ {1,2, . . . , q},

Uε =
n0(ε)⋃
j=1

Wj with Wj = f −1
ε (j) for every j ∈ {

1,2, . . . , n0(ε)
}
.

Let us show now that for every j ∈ {1, . . . , n0(ε)} there exists i ∈ {1, . . . , q} such that Wj ⊂ Vi. Suppose, on
the contrary, that there exists j0 ∈ {1, . . . , n0(ε)} such that Wj0 � Vi for all i ∈ {1, . . . , q}. Since Uε = ⋃q

i=1 Vi and
Wj0 ⊂ Uε then there exist i1, . . . , ir ∈ {1, . . . , q} such that Wj0 ⊂ ⋃r

α=1 Viα and Wj0 ∩ Viα 
= ∅ for all α ∈ {1, . . . , r}.
Note that r � 2 and Wj0 ∩ Viα is an open and closed set of Uε. Let (Wj0)α = Wj0 ∩ Viα for all α ∈ {1, . . . , r} and take

Uε = W1 ∪ · · · ∪ Wj0−1 ∪
Wj0︷ ︸︸ ︷(

(Wj0)1 ∪ · · · ∪ (Wj0)r
) ∪Wj0+1 ∪ · · · ∪ Wn0(ε).
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Then we have that Uε is the union of (n0(ε) − 1) + r > n0(ε) open and closed sets. Now define a function S :Uε →
{1, . . . , n0(ε), . . . , (n0(ε) − 1) + r} by⎧⎨⎩

S(Wj ) = j if 1 � j � j0 − 1,

S((Wj0)i) = j0 + (i − 1) if 1 � i � r,

S(Wj ) = j + (r − 1) if j0 + 1 � j � n0(ε).

It is clear that S is continuous and Card(Img(S)) > n0(ε). This contradicts Theorem 4. Therefore for every j0 ∈
{1, . . . , q, . . . , n0(ε)} there exists i0 ∈ {1, . . . , q} such that Wj0 ⊂ Vi0 = g−1(ai0).

Now define h : {1, . . . , q, . . . , n0(ε)} → P by h(j) = ai where Wj ⊂ g−1(ai). We are going to show that g =
h ◦ fε . To see this, take C ∈ Uε then there exists j0 ∈ {1, . . . , q, . . . , n0(ε)} such that C ∈ Wj0 and so there exists
i0 ∈ {1, . . . , q} such that Wj0 ⊂ Vi0 = g−1(ai0). Since g(C) ∈ g(Vi0) = g(g−1(ai0)) = ai0 and fε(C) = j0 it follows
that h(fε(C)) = h(j0) = ai0 = g(C).

Suppose now that h ◦ fε � h′ ◦ fε :Uε → P (� means homotopic), then there exists a continuous function
H̃ :Uε × I → P such that H̃ (C,0) = h(fε(C)) and H̃ (C,1) = h′(fε(C)) for every C ∈ Uε . Define the function
H : {1,2, . . . , n0(ε)} × I → P by H(i, t) = H̃ (Ci, t) where Ci ∈ Uε with fε(Ci) = i.

By Theorem 4 we have that Card(Img(fε)) and Card(Img(H̃t )) for all t ∈ I are finite and by the definition of n0(ε)

we obtain, in particular, that Card(H̃t ) � n0(ε). Since R = {f −1
ε (i) | i ∈ {1,2, . . . , n0(ε)}} is a maximal partition

of Uε , we have that H̃t (C, t) = H̃t (C
′, t) for every C, C′ ∈ f −1

ε (i), with i ∈ {1, . . . , n0(ε)}. Therefore H is well
defined.

Since H is, obviously, continuous and for each i ∈ {1, . . . , n0(ε)} it follows that H(i,0) = H̃ (C,0) = h(fε(C)) =
h(i) and H(i,1) = H̃ (C,1) = h′(fε(C)) = h′(i) then h � h′. So we have proved that the induced map between the
sets of homotopy classes of maps is a bijection for every ANR. �

The next result is the first one that points out that the upper semifinite hyperspace of a compact metric space is a
good ambient space to detect shape properties. In fact in the next result we will prove that the shape morphism, in the
sense of K. Borsuk [5], induced by a continuous function can be detected in this ambient space and using the sets Uε .

As usual sh(f ) = sh(g) means that the maps f and g induce the same shape morphism. When we talk, in the next
proposition, about X or Y we refer to their canonical copies inside their corresponding upper semifinite hyperspaces.

Proposition 9. Let X, Y be compact metric spaces and suppose that f , g :X → Y are continuous functions. Then
sh(f ) = sh(g) if and only if f and g are homotopic in Uε = {C ∈ 2Y | diam(C) < ε} for all ε > 0.

Proof. Let Q be the Hilbert cube.
Recall that the relation f � g in B(Y, ε) in Q for all ε > 0, is independent on the topological copy of Q we

choose and on the embedding of Y in Q [5]. Hence we are going to choose Q = ∏∞
n=1[−1/n,1/n] which is a convex

copy of the Hilbert cube in the Hilbert space l2 = {x = (xn)n∈N | ∑
x2
n < ∞} with ‖(xn)‖2 = (

∑∞
n=1 x2

n)1/2. By
ρ(x, y) = ‖(xn − yn)‖2 for all x, y ∈ Q we mean the induced distance on Q.

Suppose that Y is contained, as a closed set, in the Hilbert cube Q. For each q ∈ Q we take the set Yq = {y ∈ Y |
ρ(y, q) = ρ(q,Y )}. In the proof of Proposition 2 we showed that Yq is closed in Y and that r :Q → 2Y define by
r(q) = Yq is a continuous function.

Let f , g :X → Y be two continuous functions such that sh(f ) = sh(g). Then given ε/2 > 0, there exists a continu-
ous map H :X × I → Q such that H(x, t) ∈ B(Y, ε/2), H(x,0) = f (x) and H(x,1) = g(x) for every (x, t) ∈ X × I

and so ρ(H(x, t), Y ) < ε/2. Hence for y, y′ ∈ YH(x,t) we have ρ(y, y′) � ρ(y,H(x, t)) + ρ(y′,H(x, t)) < ε/2 +
ε/2 = ε. Consequently, from compactness, diam(YH(x,t)) < ε and then YH(x,t) ∈ Uε for all (x, t) ∈ X × I . Now we
can define H̃ by

H̃ :X × I −→ Uε,

(x, t) �−→ H̃ (x, t) = r
(
H(x, t)

) = YH(x,t).

It is clear that H̃ is continuous and, since Yf (x) = f (x) and Yg(x) = g(x), it follows that H̃ (x,0) = r(H(x,0)) =
Yf (x) = f (x) and H̃ (x,1) = r(H(x,1)) = Yg(x) = g(x) for all x ∈ X then H̃ is a homotopy between f and g in Uε .
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To prove the other direction we are going to consider again Y as a closed set of Q the same metric convex copy as
before. Take in Q the open ball BQ(Y, ε). By the properties of the Hilbert cube, there exists a prism K in the sense
of K. Borsuk [4] which is a compact ANR neighborhood of Y such that Y ⊂ K ⊂ BQ(Y, ε). Recall that a prism is a
subset of Q which, in particular, is homeomorphic to a product of a finite polyhedron by a Hilbert cube.

Let f,g :X → Y ⊂ K be maps. Since K is a compact ANR, then there exists a ε′ > 0 such that if
ρ(f (x), g(x)) < ε′ then f � g in K [6, p. 111]. Suppose now that f and g are homotopic in Uε for all ε > 0.
Note that we are measuring the diameters by means of the metric ρ.

Let ε′′ > 0 be such that Y ⊂ B(Y, ε′′) ⊂ K . Take δ = min{ε′, ε′′}. Then there exists a homotopy H :X × I → Uδ

such that for all (x, t) ∈ X × I we have H(x,0) = f (x) and H(x,1) = g(x). Therefore for each (x, t) ∈ X × I there
exists a neighborhood V(x,t) of (x, t) in X × I such that H(V(x,t)) ⊂ B

B(H(x,t),
δ- diam(H(x,t))

2 )
⊂ Uδ.

Let y1 ∈ H(α1, t1) with (α1, t1) ∈ V(x,t) and y2 ∈ H(α2, t2) with (α2, t2) ∈ V(x,t), then we have ρ(y1, y2) �
ρ(y1,H(x, t)) + ρ(H(x, t), y2) + diam(H(x, t)) < δ, then diam(H(V(x,t))) < δ.

As {V(x,t) | (x, t) ∈ X × I } is an open covering of the compact space X × I then there exist a finite subcover
V = {V(x1,t1), . . . , V(xn,tn)} such that diam(H(V(xi ,ti ))) < δ for i ∈ {1, . . . , n}. Consider for each i ∈ {1, . . . , n} the map
βi :X × I → R defined by

βi(x, t) = D((x, t), ((X × I ) − V(xi ,ti )))∑n
j=1 D((x, t), ((X × I ) − V(xj ,tj )))

.

By D we mean a compatible distance in the compact metrizable space X × I . We have that the functions βi

with i ∈ {1, . . . , n}, are clearly continuous and βi(x, t) 
= 0 for i ∈ {1, . . . , n} if only if (x, t) ∈ V(xi ,ti ). For each
i ∈ {1, . . . , n} fix a point vi ∈ H(V(xi ,ti )).

Now we define the function H̃ by

H̃ :X × I −→ Q,

(x, t) �−→
n∑

i=1

βi(x, t)vi .

Let (xm, tm) ∈ X × I such that limm→∞(xm, tm) = (x, t). Then it follows that

ρ
(
H̃ (x, t), H̃ (xm, tm)

) = ∥∥H̃ (x, t) − H̃ (xm, tm)
∥∥

2 =
∥∥∥∥∥

n∑
i=1

(
βi(x, t) − βi(xm, tm)

)
vi

∥∥∥∥∥
2

�
n∑

i=1

∣∣(βi(x, t) − βi(xm, tm)
)∣∣‖vi‖2 � M

n∑
i=1

∣∣(βi(x, t) − βi(xm, tm)
)∣∣.

Where M = max{‖v1‖2, . . . ,‖vn‖2}.
Since limm→∞ βi(xm, tm) = βi(x, t) then limm→∞ ρ(H̃ (x, t), H̃ (xm, tm)) = 0. Therefore H̃ is continuous.
Let (x, t) ∈ X × I be such that it belongs to k of the sets V(xi ,ti ). There is not loss of generality in assuming that

(x, t) ∈ V(xi ,ti ) for i = 1, . . . , k. Thus we have H̃ (x, t) = β1(x, t)v1 + β2(x, t)v2 + · · · + βk(x, t)vk and β1(x, t) +
β2(x, t) + · · · + βk(x, t) = 1.

Take now z ∈ H(x, t). Then

ρ
(
H̃ (x, t), z

) = ρ
((

β1(x, t)v1 + · · · + βk(x, t)vk

)
,
(
β1(x, t)z + · · · + βk(x, t)z

))
= ∥∥(

β1(x, t)(z − v1) + · · · + βk(x, t)(z − v1)
)∥∥

� β1(x, t)‖z − v1‖2 + β2(x, t)‖z − v2‖2 + · · · + βk(x, t)‖z − vk‖2

< β1(x, t)δ + β2(x, t)δ + · · · + βk(x, t)δ <

(
k∑

j=1

βj (x, t)

)
δ < δ.

Thus ρ(H̃ (x, t),H(x, t)) < δ and, since H(x, t) ⊂ Y , we have ρ(H̃ (x, t), Y ) < δ. Consequently, for all (x, t) ∈
X × I we obtain H̃ (x, t) ⊂ B(Y, δ) ⊂ K ⊂ B(Y, ε). Moreover as ρ(H̃ (x,0), f (x)) < δ and ρ(H̃ (x,1), g(x)) < δ

then H̃ (.,0) � f and H̃ (.,1) � g in K . Consequently f � g in B(Y, ε). �
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The next consequence points out one of the main differences between the homotopy and shape categories for topo-
logical spaces. K. Morita [9] proved that every topological space has the shape of some Tychonov space (completely
regular + T1-space). For homotopy, on the contrary, we have:

Theorem 10. In general Uε with ε > 0 does not have the same homotopy type as a T1-space.

Proof. Let X be a connected ANR such that there exists an essential map f :X → X. (In particular, think of X = S1).
Since X, considered as the canonical copy, is dense in 2X , it follows that Uε is connected for every ε > 0 and so,
by Remark 6, we have that the only continuous maps to a T1-space are the constants. Therefore suppose that Uε , for
every ε > 0, has the homotopy type of a T1-space, then Uε has trivial homotopy type. Consequently for every pair of
maps g, f :X → X ⊂ Uε we have that f � g in Uε for every ε > 0.

Consequently if f is an essential map and g is a constant map we have sh(f ) = sh(g) and this is not possible since
X is an ANR. �

For the whole space we have

Proposition 11. Let X be a non-empty topological space. Then 2X has the homotopy type of a point.

Proof. First we define a map H : 2X × I → 2X by

H(C, t) =
{

X if t = 0,

C if t ∈ (0,1].
If we denote by Id : 2X → 2X the identity map in 2X and by FX : 2X → 2X the constant FX(C) = X for all C ∈ 2X

then we have H(C,0) = FX(C) and H(C,1) = Id2X(C).

We need only to prove continuity of H at (C,0). Note that H(C,0) = X. Let BU be a basic neighborhood of X.
Then BU = 2X. Clearly V = 2X × I is a neighborhood of (C,0) such that H(V ) ⊂ 2X = BV which proves continuity
at (C,0). �
4. Shape theory

In this section we use the hyperspace with the upper semifinite topology to reinterpret Sanjurjo’s description of
shape of compact metrizable spaces [10] showing that the hyperspaces, with the upper semifinite topology, are as
good ambient spaces as the Hilbert cube used by K. Borsuk in [5].

Let us recall some definitions given by J.M.R. Sanjurjo in [10].

Definition 12. Let X and Y be compact metric spaces. An upper semicontinuous multivalued function G :X → Y is
said to be ε-small if diam(G(x)) < ε for any x ∈ X.

Definition 13. Let X and Y be compact metric spaces. Two ε-small upper semicontinuous multivalued functions

F,G :X → Y are said to be ε-multihomotopic, denoted by F
ε� G, if there exists a ε-small upper semicontinuous

multivalued function H :X × I → Y such that H(x,0) = F(x) and H(x,1) = G(x) for all x ∈ X.

Definition 14. A multi-net form X to Y is a sequence of upper semicontinuous multivalued functions F̃ =
{Fn :X → Y }n∈N such that for every ε > 0 there is an index n0 ∈ N such that Fn

ε� Fn+1 for every n � n0.

Definition 15. Two multi-net F̃ and G̃ are said to be homotopic, F̃ � G̃, if for every ε > 0 there is a index n0 ∈ N

such that Fn

ε� Gn for every n � n0.

J.M.R. Sanjurjo proved in [10] that the category whose objects are the compact metric spaces and the morphisms
between them are the homotopy classes of multi-nets (with an special definition of composition) is isomorphic to the
shape category of compacta defined by Borsuk in [5].
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Now our intention is to reinterpret the category obtained by J.M.R. Sanjurjo using the hyperspace with the upper
semifinite topology to obtain that, in fact, what Sanjurjo was doing there was just to change, as ambient space, the
Hilbert cube, used by Borsuk, by the corresponding upper semifinite hyperspace.

We have the next obvious result.

Proposition 16. A multivalued function F :X → Y is an upper semicontinuous multivalued function if and only if the
function f :X → 2Y defined by f (x) = F(x) is continuous.

The next definition is similar to the definition of approximative map given by K. Borsuk in [5].

Definition 17. Let X and Y be compact metric spaces. A sequence of continuous functions f̃ = {fk :X → 2Y }k∈N is
said to be an approximative map from X to Y if for every neighborhood U of the canonical copy Y in 2Y there exists
k0 ∈ N such that fk is homotopic to fk+1 in U for all k � k0.

Now we use the base U = {Uε = {C ∈ 2X | diam(C) < ε}}ε>0 of 2X to prove the next proposition.

Proposition 18. A sequence F̃ = {Fn :X → Y }n∈N is a multi-net if only if the sequence f̃ = {fn :X → 2Y }n∈N where
fn(x) = Fn(x) for all n ∈ N and all x ∈ X is an approximative map in the above sense.

Proof. First suppose that F̃ is a multi-net. Then for every open neighborhood U of Y in 2Y there exists an Uε ∈ U such
that Y ⊂ Uε ⊂ U. Since F̃ is a multi-net then for all n � n0 there exists a ε-small upper semicontinuous multivalued
function Hn :X × I → Y such that Hn(x,0) = Fn(x) and Hn(x,1) = Fn+1(x) for all x ∈ X.

Now we can define the function Ĥn :X × I → 2Y by Ĥn(x, t) = Hn(x, t) for every (x, t) ∈ X × I . Then we
have that Ĥn is a continuous function and Ĥn(x, t) ⊂ Uε ⊂ U for every n � n0. Moreover for all x ∈ X we have
Ĥn(x,0) = fn(x) and Ĥn(x,1) = fn+1(x). Consequently f̃ = {fn}n∈N is an approximative map.

Now let us suppose that f̃ is an approximative map. Then for each Uε there exists a index n0 ∈ N and a continuous
function Ĥn :X × I → 2Y such that for all n � n0 we have that Ĥn(x, t) ∈ Uε for all (x, t) ∈ X × I and Ĥn(x,0) =
fn(x) and Ĥn(x,1) = fn+1(x) for every x ∈ X.

So for each n � n0 we define the multivalued function Hn :X × I → Y by Hn(x, t) = Ĥn(x, t). Since
diam(Hn(x, t)) < ε for all (x, t) ∈ X × I then we have that Hn is ε-small upper semicontinuous multivalued function
such that Hn(x,0) = Fn(x) and Hn(x,1) = Fn+1(x) for all x ∈ X. Consequently F̃ is a multi-net. �

Following the classical definitions of Borsuk we also have.

Definition 19. Two approximative maps f̃ and g̃, are homotopic, f̃ � g̃, if for each open neighborhood U of the
canonical copy Y in 2Y there exists n0 ∈ N such that fn is homotopic to gn in U for every n � n0.

Using the same arguments as before we have.

Proposition 20. Let F̃ and G̃ be multi-nets and let f̃ and g̃ be the two approximative maps defined by fn(x) = Fn(x)

and gn(x) = Gn(x) for all n ∈ N and x ∈ X. Then F̃ and G̃ are homotopic if only if f̃ and g̃ are homotopic.

Consequently.

Corollary 1. The set of all homotopy classes of approximative maps from X to 2Y is in a bijective correspondence
with the set of all homotopy classes of multi-nets from X to Y and then with the set of shape morphisms from X to Y .
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[8] S. Mardešić, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[9] K. Morita, On Shapes of topological spaces, Fund. Math. 86 (1975) 251–259.

[10] J.M.R. Sanjurjo, An intrinsic description of Shape, Trans. Amer. Math. Soc. 329 (2) (1992) 625–636.


