Late Holocene pinewoods persistence in the Gredos Mountains (central Spain) inferred from extensive megafossil evidence

Juan M. Rubiales a,**, Mar Génova b

a Unidad de Botánica, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, 28040, Spain
b Escuela Universitaria de Ingeniería Técnica Forestal, Universidad Politécnica de Madrid, 28040, Spain

A R T I C L E I N F O

Article history:
Received 21 October 2014
Available online xxxx

Keywords:
Macrofossil
Historical biogeography
Palaeoecology
Iberian Peninsula
Pinus sylvestris
Pinus nigra

A B S T R A C T

Macro- and megafossil studies are of great value in palaeoecology because such evidence is spatially precise, directly radiocarbon dated, and usually taxon-specific. Here, we present new macro- and megafossil data from ten sites from the Gredos Mountains, central Iberian Peninsula, that suggest persistent forest cover through the late Holocene, with a widespread belt of pinewoods in the highlands of the Central Iberian Mountains. Well-preserved pine cones found at several sites revealed that both Pinus sylvestris and Pinus nigra were present in the area during the middle and late Holocene at locations of important biogeographical interest. The P. sylvestris forests represent one of the southermmost locations of its entire range. P. nigra was not known to have occurred in central Spain during the Holocene; it was found at the westernmost edge of its range in siliceous soils, a rare environment compared with the rest of its distribution. Finally, we explored the potential for obtaining a long pine chronology from central Iberia using tree-ring measurements and radiocarbon dating of pine subfossil logs.

© 2015 University of Washington. Published by Elsevier Inc. All rights reserved.

Introduction

The Gredos Mountains, located in central Spain, have long attracted the interest of ecologists, and dozens of sites have been studied from a palaeoecological perspective since the 1980s (Franco-Múgica, 2009; Carrión et al., 2012; López-Sáez et al., 2014). There, as in the rest of the Iberian Peninsula, palynology has been the main technique employed to reconstruct past vegetation (Carrión et al., 2010; López-Sáez et al., 2014). However, our understanding of the Holocene vegetation history of this region is based on a limited number of well-dated pollen records. Pollen data have suggested a major role of Pinus from ca. 6800–1500 cal yr BP (Franco-Múgica, 1995, 2009; Ruiz-Zapata et al., 1997; López-Sáez et al., 2014) and an apparent reduction in forest cover during the last two millennia (Franco-Múgica et al., 1997; López-Merino et al., 2009; Ruiz-Zapata et al., 2011). This regional demise of forests has been attributed to diverse factors such as anthropogenic activity (e.g., Franco-Múgica et al., 1997), climate change (e.g., López-Sáez et al., 2009) or shifting fire regimes (e.g., López-Merino et al., 2009).

The spatial distribution of forests through time cannot be addressed successfully through pollen studies. Records of modern pollen deposition in the Gredos Mountains show that arboreal pollen is well represented in areas without tree cover, with percentages of occurrence varying between 10% and 40% of the spectra (Andrade et al., 1994). Contrastingly, local tree presence could be detected even when its pollen is recorded at relatively low percentages (~15% to 20%) in the assemblage (Sánchez Goñi and Hannon, 1999).

A second issue concerns the uncertainties derived from the dating of pollen sequences. Pollen records from central Spain are often discontinuous (e.g., López-Sáez et al., 2009; Ruiz-Zapata et al., 2011) and most previous studies have had problems with chronologies (see Franco, 2009; López-Sáez et al., 2009).

Finally, there is a lack of information regarding the species involved in the Holocene vegetation history of central Spain. Pollen studies show that Pinus was the dominant tree taxon in Gredos during the Holocene, but of the six species of Pinus that occur naturally in Iberia only Pinus pinaster Ait can be identified to the species level (e.g., López-Sáez et al., 2010).

Currently, most of the Gredos Mountains is included in the largest protected area of the central Iberian highlands (Sierra de Gredos Regional Park, and Site of Community Importance), where the vegetation is dominated by pastures and shrublands with scattered stands and individual trees. During the last few decades, extensive reforestation with pines has occurred, resulting in a complex landscape in which natural and human-induced vegetation are often undistinguishable and leading to a debate about the naturalness and suitability of pine species in the territory (see Gómez Manzaneque, 2009). Even if palaeoecological, dendroecological and historical data support the natural origin of pine woods in central Iberia (Andrade and Hermín, 2007; Génova et al., 2009; Rubiales et al., 2010; Génova and Moya, 2012), there is still a
need to understand the past vegetation history at a higher temporal and spatial level of detail to direct conservation efforts and landscape planning.

Here, we provide new megafossil (large woody material) and macrofossil (cones or fruits) data from sedimentary deposits of the Gredos Range. Given the local origin and species-level taxonomic resolution of the remains, along with the direct radiocarbon dating of the materials, we were able to reconstruct the spatio-temporal pattern of forest cover in the Gredos Mountains, as well as to determine which tree species were present in this region during the Holocene.

Study area

The Central Range, which is located in the central part of the Iberian Peninsula, divides the Duero and Tajo basins from west to east. The Gredos Mountains are the most important system in this range. They extend for approximately 150 km and include the highest point of central Iberia (Almanzor, 2592 m asl). The bedrock is composed of siliceous rocks, primarily granites and gneisses that were geomorphologically moulded by horst-graben tectonics. The climate is montane Mediterranean, with an intense summer drought and great seasonal temperature oscillation. The mean annual temperature is approximately 10°C, and the annual rainfall varies between 1000 and 2000 mm (Morla and García, 2009).

The vegetation includes both evergreen and deciduous species. Evergreen oaks (*Quercus ilex* subsp. *ballota* (Desf.) Samp. and *Quercus suber* L. on the southern slopes), pines (*P. pinaster* and *P. pinea* L.) and mixed forest grow up to approximately 1200 m asl. The pinewoods predominate on sandy and xeric sites. *Quercus pyrenaica* L. and *P. pinaster* are found up to 1500 m asl. The tree line reaches approximately 1800 m asl on the southern slopes, with isolated and dispersed stands of *Pinus sylvestris* L and *Pinus nigra* subsp. *salzmannii* (Dunal) Franco (Génova et al., 1988; Génova and Moya, 2012). A shrub community composed of broom (*Cytisus oromediterraneus* Rivas Mart.) and prostrate juniper (*Juniperus communis* subsp. *alpina* (Suter) Celak) is dominant at the highest altitudes, along with alpine pastures (Ruiz de la Torre, 2002; Gómez Manzaneque, 2009).

Materials and methods

Sampling strategy

Woody samples were found opportunistically by screening small mires and stream banks at medium to high altitudes (1300–1900 m) in currently forested and treeless areas. Data were obtained from nine different sites (Figs. 1 and 2, Table 1). Additionally, four trunk sections were recovered from a collapsed dwelling in Navarredonda. A total of 236 macrofossils (mainly pine cones, stumps and logs) were identified, and 29 trunk sections were analysed for dendrochronological purposes. The woody remains could occasionally be identified to the species level, but most of the pine remains could only be identified to the group level based on the anatomical features of the wood (Rubiales et al., 2007, 2008).

Samples were selected for radiocarbon dating based on the site location and the size of the recovered remains. In every site, at least one megafossil was radiocarbon-dated, and the best sections of wood
those having non-decayed wood and numerous tree rings) were radiocarbon-dated and dendrochronologically analysed.

Wood identification

Thin sections (approximately 15 to 20 µm thick) of all of the selected samples were obtained using a sliding microtome. The slices were stained with safranin and dehydrated with alcohol and a solvent and clearing agent (Histoclear). Then, the sections were then mounted on coated slides, coverslipped with a hardening epoxy (Eukitt) and dried at ambient temperature. The other woody remains were examined through reflected-light microscopy at different magnifications (50 ×, 100 × and 200 ×), which is a method that is commonly used to examine fragments of charcoal. The samples were fractured manually to obtain transversally, radially and tangentially aligned surfaces suitable for microscopic analysis. Wood identification was achieved using wood anatomy keys, including those proposed by García and Guindeo (1988), Schweingruber (1990) and Vernet et al. (2001). In cases in which identification was uncertain, the samples were compared with slides from the wood reference collection of the Universidad Politécnica de Madrid.

Cone identification

The size and shape of the scales and cones were used to identify the recovered fossils to the species level. Cones of 2–5 × 1.5–3.5 cm in size with scales containing flat or slightly curved apophyses, and that are rhombic in shape with muticus or minutely mucronate umbo, were identified as *P. sylvestris*. Rounded apophyses and eccentric, hook-like umboes (Fig. 3) were considered to be diagnostic features corresponding to *P. nigra* Arnold (Farjon, 1984; Franco, 1986).

Radiocarbon dating

Sixteen radiocarbon dates were obtained from samples collected from the outer heartwood rings of the logs (Tables 2 and 3). One additional date was obtained from the scales of a cone that revealed the occurrence of *P. nigra* (Table 3), a species that had not been previously recorded in the Holocene deposits of central Spain. Within each site, subfossil trunks with a higher number of tree rings were selected in order to obtain the best available tree-ring measurements. The subfossil material usually appeared in a clear stratigraphical setting; therefore, radiocarbon dating was applied once per site. However, additional dating within the same site was performed under exceptional circumstances. For example, at the Villatoro site, the specimens were distributed more broadly over the site and clustered in distant locations, and thus several megafossils suitable for tree-ring measurements were found and dated (Fig. 1).

Dates were obtained through both conventional radiocarbon and AMS (Beta Analytic, Inc, Florida, USA; QUADRU—Quaternary Dating Research Unit, Pretoria, South Africa and 14Chrono Centre, Belfast, UK) and were calibrated using CALIB 7.0.4 software (Stuiver and Reimer, 1993) with the last dataset available (INTCAL 13, Reimer et al., 2013). The dated parts of each measured floating series corresponded to the outermost, well preserved tree-rings. The series were crossdated and assigned an approximate location according to the most probable year to which the part corresponded, using the median probability as suggested by Telford et al. (2004).

Table 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Long</th>
<th>Lat</th>
<th>Altitude (m. asl)</th>
<th>Pinus gr. sylvestris/nigra</th>
<th>Cones P. sylvestris</th>
<th>Cones P. nigra</th>
<th>Betula deciduous</th>
<th>Quercus</th>
<th>Juniperus</th>
<th>Leguminosae</th>
<th>Unidentifiable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan</td>
<td>3282</td>
<td>44,683</td>
<td>1350</td>
<td>26</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Villatoro</td>
<td>3169</td>
<td>44,883</td>
<td>1460–1510</td>
<td>29</td>
<td>47</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>Tribunales</td>
<td>3194</td>
<td>44,877</td>
<td>1720–1780</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Copeda</td>
<td>3178</td>
<td>44,646</td>
<td>1620</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Chorreras</td>
<td>3085</td>
<td>44,646</td>
<td>1790</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Pozas</td>
<td>3085</td>
<td>44,594</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Navarroredonda (fen)</td>
<td>3211</td>
<td>44,725</td>
<td>1530</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Colmenar</td>
<td>3033</td>
<td>44,689</td>
<td>1470</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Navaquesera</td>
<td>3338</td>
<td>44,769</td>
<td>1670</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Paramera</td>
<td>3575</td>
<td>44,871</td>
<td>1500</td>
<td>5</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
</tbody>
</table>
Tree-ring measurements

Cross sections of the megafossils were obtained, air-dried and progressively sanded down to a 400-grit sanding paper. The tree rings were counted and the widths measured on several radii of the sample (up to 6, depending on the shape and origin). In general, fewer radii were needed for regularly shaped stems. Sections of irregularly shaped stumps required a careful examination because these portions of the trees were likely affected by root growth and root-related mechanical effects. The ring widths were measured to an accuracy of 1/100 mm using a digital LINTAB positioning table connected to a stereomicroscope and TSAPWin software (Rinn, 2005). The COFECHA (Holmes, 1983) and TSAPWin software programs were used to perform the cross-dating and correlation analysis of the series that were used in the floating chronologies.

Results

Mega- and macrofossils

Seven taxa were identified in the assemblages. The highland pines (Pinus gr. sylvestris/nigra) were the most well-represented group (Table 1). The tree macrofossils were recovered from a wide altitudinal interval, from 1470 m asl (Colmenar) to approximately 1900 m asl (Pozas, Table 1). The wood assemblage included other taxa, such as birch (Betula L.), which occurred at the highest altitudes, deciduous oaks (Quercus), junipers (Juniperus), and shrubs (Leguminosae). Scales and seeds provide taxonomic information at the species level in Pozas (Betula pubescens Ehrh). Several hazelnuts were recorded in Villatoro, indicating that Corylus avellana L co-occurred with pines and oaks.

Cones

Most of the cones had features that enabled us to identify them at the species level. 115 cones identified as P. sylvestris were found at four different sites, namely San Juan, Colmenar, Navaquesera and Villatoro. One pine cone recovered in Villatoro corresponded to P. nigra. Eight cones were not sufficiently well preserved for identification.

Radiocarbon dating and tree-ring series from selected megafossils

Radiocarbon dating (Tables 2 and 3) indicated that the preserved pine material appears to span the past 6500 yr (Fig. 4). The radiocarbon date obtained for the cone of P. nigra revealed that the species was present at 1660 cal yr BP (Table 3). A total of 100 radii from 29 trees were obtained and cross-dated within each site (Fig. 5). Radiocarbon dates show that the tree-ring samples were clustered around three periods: 800–1200, 1500–2000 and 2400–2600 cal yr BP. Additionally, the four trunk sections recovered from the collapsed dwelling in Navarredonda were dated to approximately 450 cal yr BP. No samples suitable for dendrochronological studies have been dated to the periods 500–700 cal yr BP, 2000–2300 cal yr BP, 2700–3400 cal yr BP and a longer period between ~4000 and ~6000 cal yr BP. The first two gaps in the tree-ring record (500–700 and 2000–2300 cal yr BP) are critical for the development of a long chronology; bridging them would allow most of the floating series from subfossil wood to be linked to tree-ring series from extant specimens.

Please cite this article as: Rubiales, J.M., Génova, M., Late Holocene pinewoods persistence in the Gredos Mountains (central Spain) inferred from extensive megafossil evidence, Quaternary Research (2015), http://dx.doi.org/10.1016/j.yqres.2015.04.006
Table 2
Radiocarbon dates and internal statistics of the samples dendrochronologically studied. The dates were calibrated and the median probabilities were calculated (2 sigma) using the CALIB 7.0.4 software (Stuiver and Reimer, 1993) with the latest INTCAL13 dataset (Reimer et al., 2013). * indicates that dates were published in Rubiales et al. (2007).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab code</th>
<th>Site</th>
<th>Length</th>
<th>Mean growth (mm)</th>
<th>Mean sensitivity (%)</th>
<th>Relative mean sensitivity (%)</th>
<th>Tendency changes (%)</th>
<th>Auto correlation (lag = 1)</th>
<th>Radiocarbon date (14C yr BP)</th>
<th>Calibrated date (cal yr BP)</th>
<th>Median (cal yr BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRG01</td>
<td>Beta-278512</td>
<td>Navarredonda 1</td>
<td>65</td>
<td>2.74</td>
<td>14</td>
<td>11</td>
<td>56</td>
<td>0.95</td>
<td>330 ± 50</td>
<td>302–495</td>
<td>393</td>
</tr>
<tr>
<td>NV016</td>
<td>* Pta-9240</td>
<td>Navalacruz</td>
<td>58</td>
<td>2.53</td>
<td>21</td>
<td>24</td>
<td>47</td>
<td>0.76</td>
<td>860 ± 20</td>
<td>726–892</td>
<td>763</td>
</tr>
<tr>
<td>NVT12</td>
<td>* Beta-187347</td>
<td>Navalpital-Garganta de Gredos</td>
<td>172</td>
<td>0.46</td>
<td>18</td>
<td>25</td>
<td>65</td>
<td>0.76</td>
<td>970 ± 60</td>
<td>739–976</td>
<td>866</td>
</tr>
<tr>
<td>VT014</td>
<td>Beta-278516</td>
<td>Villatoro</td>
<td>73</td>
<td>1.17</td>
<td>21</td>
<td>34</td>
<td>60</td>
<td>0.66</td>
<td>1070 ± 40</td>
<td>927–1059</td>
<td>980</td>
</tr>
<tr>
<td>VT015</td>
<td>Beta-278517</td>
<td>Villatoro</td>
<td>60</td>
<td>2.10</td>
<td>16</td>
<td>20</td>
<td>61</td>
<td>0.86</td>
<td>1080 ± 50</td>
<td>918–1172</td>
<td>996</td>
</tr>
<tr>
<td>HOY09</td>
<td>* Pta-9249</td>
<td>Hoya del Espino</td>
<td>67</td>
<td>1.62</td>
<td>16</td>
<td>23</td>
<td>55</td>
<td>0.82</td>
<td>1090 ± 30</td>
<td>937–1057</td>
<td>997</td>
</tr>
<tr>
<td>SMV03</td>
<td>* Beta-215651</td>
<td>San Martín de la Vega del Alberche</td>
<td>124</td>
<td>1.85</td>
<td>17</td>
<td>19</td>
<td>57</td>
<td>0.89</td>
<td>1250 ± 40</td>
<td>1072–1278</td>
<td>1201</td>
</tr>
<tr>
<td>COL02</td>
<td>Beta-278509</td>
<td>Colmenar</td>
<td>82</td>
<td>1.73</td>
<td>17</td>
<td>17</td>
<td>57</td>
<td>0.89</td>
<td>1250 ± 40</td>
<td>1072–1278</td>
<td>1201</td>
</tr>
<tr>
<td>HOY10</td>
<td>* Pta-9261</td>
<td>Hoya del Espino</td>
<td>53</td>
<td>1.78</td>
<td>23</td>
<td>21</td>
<td>60</td>
<td>0.82</td>
<td>1300 ± 60</td>
<td>1171–1307</td>
<td>1228</td>
</tr>
<tr>
<td>NVT13</td>
<td>* Pta-9243</td>
<td>Navalpital de Tormes (Roncesvailes)</td>
<td>78</td>
<td>3.31</td>
<td>26</td>
<td>34</td>
<td>53</td>
<td>0.62</td>
<td>1560 ± 35</td>
<td>1377–1534</td>
<td>1464</td>
</tr>
<tr>
<td>VT008</td>
<td>Beta-278513</td>
<td>Villatoro</td>
<td>106</td>
<td>1.04</td>
<td>24</td>
<td>12</td>
<td>61</td>
<td>0.92</td>
<td>1650 ± 40</td>
<td>1414–1690</td>
<td>1553</td>
</tr>
<tr>
<td>NV001</td>
<td>* Pta-9231</td>
<td>Navadajos</td>
<td>61</td>
<td>1.66</td>
<td>22</td>
<td>18</td>
<td>53</td>
<td>0.87</td>
<td>1750 ± 45</td>
<td>1557–1809</td>
<td>1661</td>
</tr>
<tr>
<td>VT010</td>
<td>Beta-278514</td>
<td>Villatoro</td>
<td>99</td>
<td>2.43</td>
<td>18</td>
<td>10</td>
<td>48</td>
<td>0.96</td>
<td>1770 ± 40</td>
<td>1571–1733</td>
<td>1682</td>
</tr>
<tr>
<td>SEV01</td>
<td>* Pta-9235</td>
<td>San Esteban del Valle</td>
<td>63</td>
<td>1.02</td>
<td>29</td>
<td>28</td>
<td>61</td>
<td>0.71</td>
<td>1815 ± 25</td>
<td>1636–1821</td>
<td>1758</td>
</tr>
<tr>
<td>VT016</td>
<td>Beta-278518</td>
<td>Villatoro</td>
<td>115</td>
<td>1.50</td>
<td>23</td>
<td>23</td>
<td>51</td>
<td>0.78</td>
<td>1920 ± 25</td>
<td>1737–1907</td>
<td>1868</td>
</tr>
<tr>
<td>SGC08</td>
<td>* Pta-9247</td>
<td>Navacpeda</td>
<td>87</td>
<td>0.74</td>
<td>22</td>
<td>18</td>
<td>52</td>
<td>0.81</td>
<td>2085 ± 25</td>
<td>1992–2125</td>
<td>2056</td>
</tr>
<tr>
<td>SMPS05</td>
<td>Beta-215651</td>
<td>San Martín del Pimpollar</td>
<td>74</td>
<td>1.94</td>
<td>16</td>
<td>44</td>
<td>66</td>
<td>0.42</td>
<td>2350 ± 40</td>
<td>2214–2677</td>
<td>2375</td>
</tr>
<tr>
<td>VT013</td>
<td>Beta-278515</td>
<td>Villatoro</td>
<td>79</td>
<td>2.03</td>
<td>23</td>
<td>28</td>
<td>55</td>
<td>0.71</td>
<td>2380 ± 40</td>
<td>2334–2687</td>
<td>2417</td>
</tr>
<tr>
<td>GDV02</td>
<td>* Pta-9253</td>
<td>Garganta del Villar</td>
<td>87</td>
<td>3.05</td>
<td>24</td>
<td>20</td>
<td>49</td>
<td>0.87</td>
<td>2430 ± 15</td>
<td>2360–2678</td>
<td>2445</td>
</tr>
<tr>
<td>SER001</td>
<td>* Beta-187348</td>
<td>Puerto de Serranillos</td>
<td>184</td>
<td>1.68</td>
<td>19</td>
<td>25</td>
<td>54</td>
<td>0.79</td>
<td>2440 ± 60</td>
<td>2354–2710</td>
<td>2521</td>
</tr>
<tr>
<td>PAR05</td>
<td>UBA-20801</td>
<td>Paramera</td>
<td>197</td>
<td>1.21</td>
<td>12</td>
<td>12</td>
<td>65</td>
<td>0.95</td>
<td>2528 ± 40</td>
<td>2489–2747</td>
<td>2605</td>
</tr>
<tr>
<td>NGR04</td>
<td>Beta-278511</td>
<td>Navalpital de Tormes</td>
<td>118</td>
<td>2.28</td>
<td>16</td>
<td>27</td>
<td>56</td>
<td>0.75</td>
<td>3220 ± 40</td>
<td>3138–3558</td>
<td>3439</td>
</tr>
<tr>
<td>NGR02</td>
<td>Beta-278510</td>
<td>Navalpital de Tormes</td>
<td>153</td>
<td>0.77</td>
<td>32</td>
<td>24</td>
<td>53</td>
<td>0.73</td>
<td>3280 ± 40</td>
<td>3140–3606</td>
<td>3510</td>
</tr>
<tr>
<td>NVQ02</td>
<td>* Beta-208822</td>
<td>Hoyocasero-La Cañada</td>
<td>50</td>
<td>3.98</td>
<td>10</td>
<td>26</td>
<td>49</td>
<td>0.78</td>
<td>5630 ± 70</td>
<td>6289–6615</td>
<td>6415</td>
</tr>
</tbody>
</table>

Discussion

Biogeographic considerations

The site-specific megafossil data presented here confirm the long-term persistence of a widespread belt of pinewoods in the highlands of the Central Iberian Mountains. Furthermore, the finding of well-preserved cones in a number of new sites enlarges and improves the available taxonomic information. The cones suggest that, during the mid- to late Holocene, the distribution of *P. sylvestris* was much more extensive than that of *P. nigra*, a taxon for which the first known clear subfossil evidence is reported here.

Viewed together, the macrofossil data from the 36 sites in the Gredos Mountains suggest that the spatial and altitudinal distribution of trees has been relatively stable over the last six millennia (Fig. 4). This finding does not support the hypothesis that tree populations expanded and declined in response to late-Holocene climatic variations. Instead, the radiocarbon-date megafossil indices indicate that trees were continuously present during the second half of the Holocene at altitudes ranging from 1350 to 1800 m asl, which is in accordance with biogeographic modelling (Benito Garzón et al., 2007, 2008). The dating of multiple wood samples from Villatoro illustrates this continuity at a single site. With the exception of the two youngest samples, which date to ~1000 cal yr BP, the recovered remains did not overlap and appear to represent the long-term, persistent presence of pines, dating to 1550, 1690, 1870, and 2420 cal yr BP and thus spanning several generations.

Pollen records have reported the dominance of *Pinus* in the highlands of Gredos during the mid and late Holocene (Franco-Múgica et al., 1997, 1998; Andrade and Hermín, 2007; Franco, 2009; López-Merino et al., 2009). However, to the northeast of the study area (northern slopes of La Serrota and Amblés Valley), the past distribution of forests has remained unclear. At approximately 3000 cal yr BP, the palynological signal of *Pinus* is moderate (~60%) in the westernmost zones of the Amblés valley and mid altitudes in the Sierra de Ávila (site of Narrillos del Rebollar; López-Saez et al., 2009). However, the percentage of *Pinus* is low (20%) at the bottom of the valley (Barrena; López-Saez et al., 2009) and almost lacking at any of the other sites situated further East. Megafossil data from Villatoro and Tribunales indicates the presence of pinewoods at these northern locations, expanding its late Holocene distribution to the northern slopes of La Serrota, and suggesting that the pine dominance was restricted to mountain areas (altitudes higher than 1400 m).

The first subfossil evidence of *P. nigra* in northern Gredos (Villatoro) is of particular interest. This species is found widely in the mountains of Eastern and Northern Spain, but it is currently rarely found in the Central Range and other areas of siliceous bedrock (Costa et al., 1997). Our results are in accordance with the predictive modelling carried out by Benito Garzón et al. (2007), which suggested that these northern areas of Gredos, unlike the Central Massif, were suitable for *P. nigra* at the mid-Holocene and at present. This finding is also consistent with other palaeoecological data showing that in areas bordering the Northern Iberian Plateau (García-Amorena et al., 2011), as well as in other areas of southern and eastern Spain, the distribution of *P. nigra*...
was wider during the mid and late Holocene than at present (Badal et al., 1994; Alejano and Martínez Montes, 2006). Palynological records also suggest that the abundance of \(P. \ nigra \) was higher during the mid Holocene than at present (e.g., Stevenson, 2000; Carrión et al., 2001; Anderson et al., 2011; Aranbarri et al., 2014), although the lack of detailed taxonomic information in pollen records hampers the precise role of this species when other pines may have been present (\(P. \ pinaster \) or \(P. \ sylvestris \)). This is also the case of the mid altitudes of Cerrato or the Cantabrian Mountains (García-Antón et al., 2011; Rubiales et al., 2012a).

Samples corresponding to the period from 3000 to 800 cal yr BP were widely distributed in Gredos, but more recent pine macrofossil records are lacking and dated series from living specimens begin in the 17th century (Génova, 2009). Fire has been considered to represent an important ecological disturbance affecting Iberian mountain pines (\(P. \ nigra \) and \(P. \ sylvestris \)) during the last three millennia (Rubiales et al., 2012b). These two pines are classified as “resister strategy” species (sensu Agee, 1998), with some history traits that would allow them to survive low-severity fires (thick bark and self-pruning) but a lack of adaptations to resist to crown fires, such as serotiny or early reproduction (Pausas, 2015). Coupled analyses of pollen and microscopic charcoal in sedimentary sequences usually show that a demise of mountain pines corresponds with increasing trends or maxima in fire-prone shrublands and the micro- and macroscopic charcoal record (e.g. Connor et al., 2012; Rubiales et al., 2012b; Morales-Molino and García-Antón, 2014). The palaeoecological record of López-Merino et al. (2009), the only sedimentary sequence recording fire history in Gredos, suggests that fires were intense and associated with other human activities such as grazing (López-Merino et al., 2009). The coincidence of an intensification of human activities and fire with the pine demise may be responsible of this gap of subfossil material during part of the last millennium (Rubiales et al., 2007; Morla and García, 2009).

Dendroecological considerations concerning subfossil specimens: prospects and limitations

The discovery of large numbers of megafossils suitable for dendrochronological examination and the subsequent development of floating chronologies open new directions for the study of the long-term history of pinewoods and climate in this region. At present, there are few high-resolution paleoenvironmental records from Spain that span the late Holocene, and only limited data exist from central Iberia (Pérez and Boscolo, 2010). In the highlands of central Spain, most information about the climate of the last three millennia come from pollen records, which are likely affected by anthropogenic disturbance of the vegetation (Franco-Múgica et al., 1998; López-Merino et al., 2009; Rubiales et al., 2012b). Thus, the development of late-Holocene climate reconstructions with annual resolution would represent a major advance.

The length of the series varied between 197 and 50 yr, with a mean of 91 yr. The series showed mean sensitivity values (i.e., the relative change in ring-width from 1 year to the next) ranging from 0.10 to 0.32 (Table 2). Mean sensitivity (MS) is a good measure of the relative ease of cross-dating, and excluding the youngest specimens (less than 70 yr), all of the series had MS values higher than 0.17. These values were comparable with the present range for \(P. \ sylvestris \) and \(P. \ nigra \) in central Spain (Richter et al., 1991; Génova et al., 1993; Benso, 2007; Génova and Moya, 2012).

In central Iberia, dendroclimatological studies from \(P. \ sylvestris \) and \(P. \ nigra \) have provided climatic information for the past four centuries.

![Fig. 4. Age distribution of subfossil \(Pinus \) gr. \(sylvestris \) wood in the Gredos Mountains. Top panel: composite data for all sites. Second panel: composite data by location (blue: Paramera, Serrota and Villafranca mountains; red: Alberche and Tormes headwaters, and yellow: Central Mountains). Third to fifth panels: altitudinal distribution of the sites by age. The samples are grouped by millennium (cal yr BP). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](http://dx.doi.org/10.1016/j.qures.2015.04.006)
(Fernández et al., 1996; Génova, 2000, 2009), demonstrating the potential for the reconstruction of long-term regional climatic parameters in the Central Range. These studies have detected that both temperature and precipitation control ring widths at high elevations. Tree-ring studies have been able to provide annually resolved proxy time series of climatic variations for different European locations that cover millennial time scales (Gunnarson and Linderholm, 2002; Büntgen et al., 2005; Grudd, 2008). However, uncertainties regarding possible climatic reconstructions from subfossil material have appeared because the majority of the analysed samples were recovered from peatlands. At least at northern latitudes, the climate–growth response of trees growing in peatlands is different than those from trees growing on dry sites. For example, the climatic information furnished by peatland Scots pines was weaker than for those living in dry soils (Linderholm et al., 2002; Moir and Leroy, 2011). Other ecological features (i.e., periods of climate-related hydrological variations) have been also reconstructed from growth-rings from bog pines. Here, increased tree growth usually reflects lowering of the groundwater table and, contrastingly, growth depressions are linked with higher groundwater tables, most likely related to colder and wetter climate (e.g., Gunnarson, 2008; Moir et al., 2010; Edvardsson et al., 2012).

In light of our results, cross-dating across sites may be a key step in the development of a usable tree-ring chronology. We identified clear periods of overlap among the sites, but correlations were relatively weak (Fig. 5). This is largely due to the relatively low number of measured tree rings in each series (average ~90). Visual cross-dating can be additionally supported by a multi-step approach (Wilson et al., 2012), using other tree ring parameters that could help into the chronology development, such as wood density or blue intensity (Rydval et al., 2014).

Future tree-ring research in the mountains of central Spain should focus on extending the chronologies from living trees to the first floating series, which are radiocarbon dated to 800–900 cal yr BP. Efforts should be concentrated on obtaining more samples from archaeological sites and from those sites where the youngest radiocarbon-dated samples were found. The addition of samples spanning the current gap would allow the conversion of the floating chronologies from the Gredos Mountains into the first securely dated, annually resolved paleoenvironmental record for the western Mediterranean.

Acknowledgments

We thank Carlos Morla and Fernando Gómez Manzaneque for their significant help with field work, suggestions and support. The foresters from the Gredos Regional Park deserve special thanks for their efforts in searching for and locating materials and communicating their findings to our team. We particularly thank Pedro Pérez, Florencio Martín, Javier Ruiz and Sergio Rastreo. The assistance with field work furnished by Nacho García Amorena, Rufino García, Ramón Alegria, Mercedes García Antón, Helios Sainz-Ollero, Miguel Angel Casado, Juan Carlos Moreno,
José Carlos Miranda and our colleagues from the Unidad de Botánica is much appreciated. David García-Calvo measured part of the dendrochronological material and together with Violeta Roch helped with the processing and study of the sites and materials. Enrique Garriga (INIA) helped with the sampling of some samples. José de Esteban also provided information for locating the sites of Tribunales, in la Serrota. We are processing and study of the sites and materials. Enrique Garriga (INIA) and Balearic Islands. Review of Palaeobotany and Palynology 162, 458–467.

