
A large-scale approach can help detect general
processes driving the dynamics of brown trout
populations in extensive areas

Introduction

Understanding the mechanisms underlying the spatio-
temporal variation of abundance and demographic
variables is a key question in population dynamics.
Population regulation and ⁄or limitation is the central
concept in studies on these processes; currently, the
main objective of researchers in this field is to
determine the relative influence of exogenous and
endogenous drivers of this fluctuation (Coulson et al.
2008). Among the studies carried out on salmonids,
those related to population dynamics have been
abundant. Therefore, knowledge on the processes

and traits that govern the temporal variation of
population abundance in these species is vast; see
Milner et al. (2003). Given the territorial behaviour
exhibited throughout all their life stages, these species
are also ideally suited for studying the importance of
density-dependent versus density-independent pro-
cesses (Vollestad & Olsen 2008).

To express the results on a scale compatible with
fishery management strategies, and also owing to the
scarcity of large-scale data sets including both biolog-
ical and environmental information for several years
over several basins, most studies on the population
dynamics of stream-living salmonids have been
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performed at the scale of a reach, a stream or a river
basin (Milner et al. 2003), leaving the dynamics of
abundances at other scales, such as those including
several basins, little studied (but see Cattanèo et al.
2003 and Zorn & Nuhfer 2007 for two exceptions). At
these limited scales, the factors governing populations
are, to some extent, local and diverse. This can lead to
an overestimation of the importance of local factors
acting on a reduced scale compared to more general
factors influencing the dynamics of several popula-
tions inhabiting larger areas. If common processes
driving separated independent populations are found,
these are likely to provide wider and more robust
knowledge on the autoecology of the species than
locally limited process. In addition, models built on
this basis are expected to have better explicative and
predictive capabilities than those based on more
locally relevant variables (Hallett et al. 2004; Stenseth
& Mysterud 2005). Furthermore, if several indepen-
dent populations are found to share a common
response to the lumped value of a given population
variable, such as the mean density of the whole set of
populations, then the effect of an additional synchron-
ising mechanism can be inferred.

The aim of this study is to explore whether the mean
density of a set of independent trout populations can
be explained by means of a single model. If this is
performed in a large and heterogenous area, the
resulting model would determine the main processes
driving the population dynamics at a large geograph-
ical scale, instead of drawing conclusions based on
more local effects.

To do this, traditionally a density-dependence-based
deterministic model is fitted to the population data
prior to the addition of exogenous limitation factors,
frequently considered as random environmental noise.
Coulson et al. (2001) showed that exogenous drivers
act on population dynamics, not only as additive
factors, but also through nonadditive processes, influ-
encing the relationship between population density
and population growth rates (pgrs). Nonadditive
effects of exogenous and endogenous drivers on
population dynamics have recently been studied for
different taxa (Coulson et al. 2008). Nonadditivity in
brown trout abundance dynamics has been studied at a
local scale by Vollestad & Olsen (2008).

Therefore, population dynamics models should be
fitted giving a priori the same importance to exoge-
nous and endogenous drivers and the interaction
among them. Because ours is an exploratory approach
to large-scale dynamics, a free-of-prejudices approach
will be followed. For this reason, an initial set of
potential drivers will be tested to find the general
factors that govern the interannual variation of the
mean density of a set of independent brown trout
populations.

Studies specifically determining to what extent
exogenous factors influence the temporal dynamics
of a given brown trout (Salmo trutta L.) population
have been widely conducted (Lobón-Cerviá & Mor-
tensen 2005; Budy et al. 2008). Some of these were
carried out in the Iberian Peninsula (Lobón-Cerviá &
Rincón 2004), producing a good amount of knowledge
on this matter at the population scale. Many studies
have shown the influence of stream flow regime
(Lobón-Cerviá & Mortensen 2005; Alonso-González
et al. 2008; see Vollestad & Olsen 2008 for a review)
and water temperature (Borgstrøm & Museth 2005) on
brown trout population dynamics, so both variables
are good candidates to be direct exogenous drivers of
brown trout abundance dynamics.

Not only linear effects have been identified, but also
nonlinear effects of exogenous drivers have been
found to drive brown trout recruitment. Lobón-Cervia
& Rincón (2004) found that recruitment was poor
when either too high or too low discharge in March
occurred.

At a large-scale approach, measures of the natural
interannual variation of an ecologically relevant
climate variable acting at a scale that involves the
whole study area should be used. Such variables
would be preferred instead of more local variables,
such as flow and temperature regimes, because the
main objective of this work is to find the potential
factors driving the whole set of independent brown
trout populations in the study area. Following Stenseth
& Mysterud (2005), climatic variables used as weather
packages should fulfil ‘the time window component,
the spatial window component and the weather
composition component’, meaning temporal, spatial
and climatic scales. For this reason, in this study, the
North Atlantic Oscillation index (NAO, north-south
dipole of anomalies, with one centre located over
Greenland and the other centre of opposite sign
spanning the central latitudes of the North Atlantic
between 35� and 40�N) has been chosen to represent
the exogenous drivers.

Since the 1990s, many authors have studied the
influence of NAO in ecological processes (Ottersen
et al. 2001), both in terrestrial and in marine ecosys-
tems (Stenseth et al. 2002; Mysterud et al. 2003).
Straile et al. (2003) provided a good review on the
reported effects of NAO in freshwater ecosystems and
highlighted the scarcity of evidence for an impact of
the NAO on freshwater fish species. In salmonids, the
few pieces of evidence of this relationship lay mainly
in physiological traits such as size and age of maturity
in Atlantic salmon (Jonsson & Jonsson 2004) and
emergence date in brown trout (Elliott et al. 2000).
However, Borgstrøm & Museth (2005) and Hari et al.
(2006) found correlations between NAO and popula-
tion dynamics traits in brown trout.
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A number of studies have recently identified
endogenous factors influencing autoecological traits
of salmonids, such as survival (see Vollestad & Olsen
2008 for a review) or recruitment (Elliott 1994; Nicola
et al. 2008). Some studies have found that density can
indirectly control population size by directly affecting
other biological parameters such as individual growth
(Jenkins et al. 1999; Post et al. 1999; Lobón-Cervia
2007a) or egg size (Gregersen et al. 2006). Intra- and
intercohort competition have been identified as pro-
cesses underlying some of these effects (Nordwall
et al. 2001).

Study area

The selected study area had to meet the following
conditions:

• To have relatively long time series for population
and demographic data sets.

• To include several basins and, if possible, basins
showing different environmental characteristics.

• To have a large, minimally disturbed river
network.

The study area comprises all rivers and streams
where brown trout are present in Navarra (north Spain,
long. 0�43¢–2�29¢W, lat. 41�54¢–43�19¢N). This area
(6420 km2) is rather heterogeneous, containing two
freshwater ecoregions: Cantabric coastal Languedoc
(403) and eastern Iberia (414) (Abell et al. 2008), with
altitudes ranging from 0 to 2444 m.a.s.l. The largest
river basins included in the study area are: Ebro basin

(5458 km2), flowing eastwards to the Mediterranean
Sea; Bidasoa (673 km2), Oria (124 km2) and Urumea
(165 km2) basins, flowing northwards to the Bay of
Biscay in the Atlantic Ocean.

Methods

Brown trout density (individualsÆha)1) and age struc-
ture (per cent of fry, juvenile and adult age classes)
data have been collected every summer (July–Sep-
tember) by the environmental authority of Gobierno de
Navarra and Gestión Ambiental, Viveros y Repoblac-
iones de Navarra (GAVRN) for the period from 1992
to the present time in a network of 60 sampling sites
(see Fig. 1). This sampling network has been designed
by the angling management authority of Navarra to
represent the natural range of the distribution of brown
trout in the whole region, and it has been described
elsewhere (Ayllón et al. 2009; Parra et al. 2009;
Ayllón et al. 2010). Three sampling stations are
located in every river, one in the upper reach, one in
the medium reach and a third in the lower reach, plus
scattered sites in small tributaries. Mesohabitats
included in every sampling site represent the distribu-
tion of mesohabitats in the reach where they are
located, including at least one riffle-pool sequence. All
sampling sites meet the criterion of a minimum
sampled area of 0.1 ha. The width of 59 of the 60
sampling sites measured during the 2009 campaign
ranged from 2.2 to 18 m (average site width: 8.3 m),
with a single site wider than 18 m (35 m). To meet the

Fig. 1. Study area (shadowed) in the region of Navarra (north Spain) and sampling network (60 sites).
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minimum sampled area of 0.1 ha, in that survey
campaign site lengths ranged from 49.5 to 172 m
(average site length: 107.5 m). The sites were located
between natural breaklines or small obstacles and two
or three pass-removal – according to Seber & Le Cren
(1967) criteria – electrofishing was conducted in all
the stream width. One sampling team of six to nine
persons, depending on the site width, was required to
survey the whole network in 2-month time (July 15th–
September 10th). Fork lengths (to the nearest mm)
were measured for every captured individual. Trout
density (individualsÆha)1) was estimated using the
explicit solution of Seber & Le Cren (1967) to the
maximum likelihood method with constant effort. Age
of the individuals was estimated by means of a
combination of scale reading and length frequency
distribution analysis.

Because our main goal is to uncover general traits of
mean density through time across the whole study
area, the mean fry, juvenile, adult and total density
from all (60) sampling sites were calculated and used
to produce the mean density time series.

Mean monthly NAO data series (1992–2009) were
obtained from the Climate Prediction Center, US
National Oceanic and Atmospheric Administration
(NOAA; http://www.cpc.noaa.gov/products/precip/CW
link/pna/norm.nao.monthly.b5001.current.ascii.table).

We built two types of models to test whether an age-
structured model could perform better than a non-
structured model. The same procedure was followed to
fit both types of models, and, according to Coulson
et al. (2008) advice, simple linear models were used
prior to testing more complex functional forms.

A model selection was conducted from all multi-
variate regression models that could be fitted to an
initial set of nine potential variables to explain the
variation of mean pgr. Both endogenous and exoge-
nous potential drivers were considered to test for
additive effects, as well as their interactions to account
for nonadditive effects. To test the potential nonlinear
effects of exogenous drivers, squared terms of the
exogenous variables were also tested. The initial set of
independent variables was the following:

• Endogenous drivers: Nt, Nt)1 and Nt)2, mean
density (individualsÆha)1) estimated from the
Seber & Le Cren (1967) method in all (60)
sampling sites in year t, t)1 and t)2, respectively.

• Exogenous drivers: NAOw,t+1 and NAOs,t+1, mean
winter (January, February and March) and spring
(April, May and June) values of the North Atlantic
Oscillation (NAO) index in year t + 1, which is
likely to influence the change in the population size
between year t, Nt, and year t + 1, Nt+1.

• Nonlinear effects: NAO2
w;tþ1 and NAO2

s;tþ1,
squared values of mean winter and spring NAO
index in year t + 1.

• Interactions among variables, nonadditive effects:
Nt · NAOw,t+1 and Nt · NAOs,t+1, product of
population density in year t, and winter and
spring NAO in year t + 1.

The base time lag has been chosen following
Turchin’s recommendation that it should generally be
set equal to 1 year unless the generation time is much
different from 1 year (Turchin 2003).

The possible effects of lagged population sizes
(Nt)2, Nt)1) were tested because Nt)2 may drive
spawning population size in year t, and Nt)1 can
influence survival of 0+ through intercohort competi-
tion (Henderson & Letcher 2003). Densities of age
classes 0+ (N1,t), 1+ (N2,t) and ‡2+ (N3,t) were not
considered in the initial set of variables because total
density (Nt) is the linear combination of these values;
Nt is highly correlated with N1,t; and N1,t is highly
correlated with N3,t)1.

Seasonal exogenous variables (NAO) were limited
to winter and spring because 0+ survival is known to
be influenced by water discharge during the incuba-
tion (Alonso-González et al. 2008) and the emer-
gence (Lobón-Cerviá & Rincón 2004) periods, which
usually take place in winter (January–March) and
spring (March–June), respectively, in the study area
(Gortázar et al. 2007). No indirect effects such as the
influence of lagged NAO were considered, although
they can be of importance in influencing Nt)2, Nt)1
and Nt, but these effects are already included in the
model.

When interaction terms are included in multiple
regression models, lower order terms will usually be
highly correlated with their interactions, resulting in
inflated variances of estimated coefficients associated
with collinearity (Quinn & Keough 2002). To avoid
this undesirable effect, all variables were rescaled by
centring, i.e., subtracting their mean from each
observation, so the interaction would be then the
product of the centred values (Aiken & West 1991).

Multiple regression models were then fitted for the
complete time series (1992–2008) with the aim of
uncovering the driving processes of the pgr, kt:

kt ¼ f ðktjNt;Nt�1;Nt�2;NAOw;tþ1;NAOs;tþ1;

NAO2
w;tþ1;NAO2

s;tþ1;Nt �NAOw;tþ1;

Nt �NAOs;tþ1Þ

where the dependent variable, pgr, is calculated as:

kt ¼ Ntþ1=Nt

As the objective of model selection is to find the
smallest subset of predictors that provides the best fit
to the observed data to avoid ‘overfitting’, a preselec-
tion of models was conducted among different num-
bers of variables. A single model was selected for
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every possible subset of the initial set of variables
ranging from 1 to 6 variables, thus obtaining six
preselected multiple regression models, each with a
different number of significant (95% c.l.) independent
variables. No higher order (‡7 parameters) models
were found significant at the considered confidence
level (95%). Among every subset of models, selection
criteria were: (i) maximum value of adjusted r2, which
basically uses mean squares instead of sum of squares
and is useful to compare models with different
numbers of parameters; and (ii) minimum value of
Mallow’s Cp (Gorman & Toman 1966), which works
by comparing a specific reduced model to the full
model with all predictors included.

From the six preselected models, the model that
provided the ‘best fit’ to the observed data was
selected using Akaike (1978) (AIC) and Bayesian or
Schwarz (1978) (BIC) information criteria. Both
criteria tend to select models with the smallest number
of parameters, but the Bayesian information criterion
(BIC) penalises more harshly models with a greater
number of predictors than the AIC.

As collinearity can lead to an inflation of the
variance of the estimated regression coefficients,
correlation among the variables of the selected model
was tested and, when it was found to be significant
(95%) and with an absolute value of r-Pearson higher
than 0.5 among any pair of variables, Ridge Regres-
sion was conducted with the selected variables. In this
technique, a small biasing constant is added to the
normal equations that are solved to estimate the
standardised regression coefficients, biasing the esti-
mated regression coefficients but also reducing their
variability and hence their standard errors (Quinn &
Keough 2002). The chosen value of the constant was
the best compromise between reducing the Variation
Inflation Factor (VIF) of the variables and minimising
the reduction of the adjusted r2 value.

Once the model was parameterised, observed
(Nobs,t) versus modelled mean densities at time t
(Npre,t) were compared to represent the descriptive
capability of the fitted model.

The predictive capability of the selected model was
also tested. For this purpose, 14 different predicted time
series were built by iterating themodelled values ofNt+1

(e.g., to predict Nt+1 = N2007 the observed values of
NAOs,t+1 = NAOs,2007 and NAO2

w;tþ1 ¼ NAO2
w;2007;

and the previously predicted values of Nt = N2006;
Nt)1 = N2005; Nt)2 = N2004 were used) starting every
time series from the observed value of Nt of a different
year (1994–2007). Every predicted time series was
plotted against the observed time series, and the
distributions of the standard error for the forecast of
Nt+1 of the different prediction terms were compared.

A demographic approach was carried out by
conducting the same steps described above using each

age class per capita growth rate: k1,t, k2,t and k3,t as
dependent variable. Starting from the definition of per
capita pgr:

kt ¼ Ntþ1=Nt ¼ ðN1;tþ1 þ N2;tþ1 þ N3;tþ1Þ=Nt

¼ ðN1;tþ1=NtÞ þ ðN2;tþ1=NtÞ þ ðN3;tþ1=NtÞ
¼ k1;t þ k2;t þ k3;t

therefore:
k1;t ¼ f ðk1;tjNt;Nt�1;Nt�2;NAOw;tþ1;NAOs;tþ1;

NAO2
w;tþ1;NAO2

s;tþ1;Nt �NAOw;tþ1;

Nt �NAOs;tþ1Þ

k2;t ¼ f ðk2;tjNt;Nt�1;Nt�2;NAOw;tþ1;NAOs;tþ1;

NAO2
w;tþ1;NAO2

s;tþ1;Nt �NAOw;tþ1;

Nt �NAOs;tþ1Þ

k3;t ¼ f ðk3;tjNt;Nt�1;Nt�2;NAOw;tþ1;NAOs;tþ1;

NAO2
w;tþ1;NAO2

s;tþ1;Nt �NAOw;tþ1;

Nt �NAOs;tþ1Þ

The model thus obtained is an age-structured model
providing a demographic approach to the factors that
govern the pgr.

Results

When testing for correlation among the variables in the
initial set of potential drivers, nine significant (95% c.l.)
correlations were found. After rescaling the variables by
centring, significant correlations were reduced to five.

The nonstructured model that scored the best results
according to the values of r2 and adjusted r2, Mallow’s
Cp and Akaike (AIC) and Bayesian (BIC) information
criteria was the six-parameter model (Table 1), in
which endogenous variables Nt)1, Nt)2, exogenous
NAOw,t+1, NAOs,t+1, the nonlinear influence of spring
NAO, NAO2

s;tþ1, and nonadditive effect of endoge-
nous and exogenous factors Nt · NAOs,t+1 were
significant at 95% c.l. This model originally explained
93% of the observed variability of kt. As significant
(r-Pearson >0.5; 95% c.l.) collinearity was found
among two pairs of its explanative variables, ridge
regression (biasing constant = 0.02) had to be con-
ducted to lower the highest value of Variance Inflation
Factor (VIF), corresponding to variable NAO2

s;tþ1
(VIF = 2.9), below 2.5 – which is half the
value usually indicating high collinearity – and
thus reducing the r2 to 89.2% and slightly changing
the values of the parameter estimates (i.e.,
kt = )0.0438 + 0.0002ÆNt)1 + 0.0003ÆNt)2 ) 0.3579Æ
NAOw,t+1 ) 0.2883ÆNAOs,t+1 ) 0.1998ÆNAO2

s,t+1 +
0.0002ÆNt · NAOs,t+1). The standard error of the
estimate was 0.093. The Durbin–Watson statistic

Large-scale population dynamics

5



showed a P-value slightly higher than 0.05
(P = 0.0512), which means that there can be serial
autocorrelation in the residuals at 90%.

Table 1 also shows a five-parameter model, which
explains up to 89.3% of the observed variability of the
pgr. In this case, endogenous factors Nt, Nt)1, Nt)2,
exogenous NAOs,t+1 and the nonlinear influence of
winter NAO, NAO2

w;tþ1, were found to be significant
at 95% c.l. The standard error of the estimate is 0.109.
As the Durbin–Watson statistic showed a P-value
>0.05 (P = 0.197), there is no evidence of serial
autocorrelation in the residuals at 95%. No collinearity
was found among the explanatory variables.

Because of the lack of collinearity among the
variables and serial autocorrelation in the residuals and
as parsimony (i.e., using no more complex a model
than is absolutely necessary) of the model is a guiding
principle in scientific investigations (Mulligan &
Wainwrigth 2004), the five-parameter model has been
selected to be plotted in Figs 2 and 3. However, the
selection criteria (r2, adjusted r2, Mallow’s Cp, AIC
and BIC) found the six-parameter model as the best
model; therefore, its variables should be taken into
account when explaining the factors that drive brown
trout population dynamics in this study.

The estimates of the coefficients and the measures
of goodness-of-fit of the models that provided the best
fit to the observed data of age classes 0+, 1+ and ‡2+
per capita growth rates, k1,t, k2,t and k3,t, are also
shown in Table 1. The summation of modelled k1,t, k2,t
and k3,t,

P
ki,t, leads to an age-structured model of the

pgr, kt, which is in this case modelled following a
demographic approach.

The best model of age class 0 + pgr is a four-
parameter model in which endogenous variables Nt,

and Nt)2; exogenous NAOs,t+1 and the nonlinear effect
of the winter NAO, NAO2

w;tþ1 significantly (95% c.l.)
explained up to 89% of the observed variability of k1,t.
These variables were also significant in the five-
parameter nonstructured model and showed the same
signs as well. The mean standard error of the
estimation is 0.105. The Durbin–Watson statistic
(P = 0.2708) showed no indication of serial autocor-
relation among the residuals, neither collinearity
among the variables was found.

The only significant (95%) variable in the best
model of age class 1 + pgr was Nt)1, explaining 41%
of the variability of k2,t, with a standard error of the
estimation of 0.032.

The variables that were found to significantly
explain up to 97% of the variability of mature age
classes, k3,t, in the best model (according to all
selection criteria) were the same, and with the same
sign, as in the five-parameter nonstructured model
(i.e., Nt, Nt)1, Nt)2, NAOs,t+1, NAO2

w;tþ1). The
standard error of the estimation was 0.005, with no
serial autocorrelation (Durbin–Watson, P = 0.171)
among the residuals and no collinearity among the
independent variables.

When the modelled values are plotted against the
observed densities (Nt) throughout the period of years
of this study, it is easier to notice the descriptive
capability of both nonstructured and age-structured
models (Fig. 2a,b). In this figure, all the time series of
the observed values of the explanatory variables have
been used to obtain every predicted Nt+1 (e.g., to
predict mean summer density of brown trout
Nt+1 = N2007 the observed values of Nt = N2006;
Nt)1 = N2005; Nt)2 = N2004; NAOs,t+1 = NAOs,2007

and NAO2
w;tþ1 ¼ NAO2

w;2007 were used).

Table 1. Parameter estimates, P-value (in brackets), coefficient of determination r2, adjusted r2, Mallow’s Cp, Akaike (AIC) and Bayesian (BIC) information criteria
of the nonstructured and the age-structured models of population growth rate.

Nonstructured model, k1,t Age-structured model, Rki,t

5-parameter 6-parameter k1,t k2,t k3,t

Estimates (P-value)
Constant )0.2142 (0.002) )0.0368 (0.347) )0.1718 (0.007) )0.0229 (0.038) )0.0123 (0.0012)
Nt )0.0003 (0.0002) – )0.0003 (0.0003) – )2.5 · 10)5 (0.000)
Nt)1 0.0001 (0.014) 0.0002 (0.007) – 4.06 · 10)5 (0.0185) 1.56 · 10)5 (0.0005)
Nt)2 0.0004 (0.0002) 0.0003 (0.001) 0.0004 (0.0001) – 2.01 · 10)5 (0.0002)
NAOw,t+1 – )0.3613 (0.001) – – –
NAOs,t+1 )0.1612 (0.013) )0.3179 (0.001) )0.2141 (0.0054) – )0.0190 (0.0004)
NAO2

w;tþ1 0.7078 (0.007) – 0.7827 (0.0032) – 0.0508 (0.0008)
NAO2

s;tþ1 – )0.2320 (0.018) – – –
Nt · NAOw,t+1 – – – – –
Nt · NAOs,t+1 – 0.0002 (0.002) – – –
Measures of goodness-of-fit
r2 0.893 0.930 0.887 0.409 0.966
Adjusted r2 0.826 0.878 0.830 0.356 0.942
Cp 10.73 7.00 8.07 )2.26 6.56
AIC )57.91 )62.74 )54.95 )87.27 )133.73
BIC )54.07 )58.27 )52.12 )86.14 )130.34
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Different predicted time series obtained from the
iteration of the selected models starting from different
years are presented in Fig. 3(a,b).

The accuracy of predictions was expected to be
higher in years near the beginning of every time series
than in years far from them because prediction errors are
likely to accumulate in each iteration of the model. The
absolute value of the standard error for forecasts can be
plotted against the number of years lasting from the year
whosemean density was used to start the iteration of the
model (namely, term of prediction; Fig. 3c,d).

Discussion

The interannual variation of the mean growth rate of a
set of independent brown trout populations can be
described fairly accurately (i.e., >89% of variance

explained) by means of a single multivariate model.
This may indicate that the factors included in the
model are likely to be the main drivers of the
population dynamics of brown trout at a regional
scale in the study area.

A set of exogenous and endogenous variables were
found to describe the temporal variation of the mean
density of the studied populations. Additionally, good
predictions can be made using both nonstructured and
age-structured (best) approaches for a prediction term
equal to 1 year. When increasing the prediction term,
error grows slightly faster in age-structured than in
nonstructured models. Besides, the sign of error
remains more stable in nonstructured than in age-
structured model.

The accuracy of long-term predictions largely
depends on the number of endogenous variables in
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Fig. 2. Results of the fitted nonstructured (a) and age-structured (b) models represented against time; and observed versus modelled graph:
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the model such that the higher the number of
endogenous variables in the model the less accurate
predictions are. The reason for this fact arises from the
iterative process, which accumulates predicted errors
from the years before, and when many endogenous
variables are used in the model, the error gets
accumulated and becomes bigger. Therefore, as long
as an age-structured model has more endogenous
variables (it is a summation of three age class partial
models) its explicative capability is high, whereas its
long-term predictive capability is lower than the
nonstructured model (Fig. 3). In addition, predictions
made by the nonstructured model are more consistent
than those of the age-structured model (Fig. 3a,b).

Factors governing the mean pgr of the whole set of
independent populations appeared to be both exoge-
nous (i.e., spring NAO, NAOs,t+1) and endogenous
(i.e., Nt, Nt)1 and Nt)2) in an additive form, and also
nonlinear effects of exogenous factors have been

identified as significant drivers of pgr (i.e.,NAO2
w;tþ1).

Both nonstructured and age-structured selected models
showed the same five significant variables.

However, an alternative six-parameter nonstruc-
tured model was also found to provide a good fit to the
observed data. This model is less parsimonious than
the selected five-parameter model, but its good
performance can give additional information. In
addition to some of the variables that were found
significant in the five-parameter model, in this model,
winter NAO was found to negatively affect the pgr.
A nonlinear negative effect of spring NAO was also
detected, indicating that too low (negative) or too high
(positive) values of spring NAO may reduce the pgr.
A significant nonadditive effect (Nt · Ns,t+1) was
detected indicating an interaction of density and
climate on the pgr. On the basis of our large-scale
analysis, it is not straightforward to make an interpre-
tation of these combined effects of exogenous and
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endogenous factors without falling into speculative
conclusions, and deeper analyses must be conducted to
understand them. The fact appears to be that the way
exogenous factors drive populations is influenced by
endogenous determinants. In this sense, Vollestad &
Olsen (2008) found that density-dependent effects on
brown trout survival predominated when no drought
occurred, while density-independent processes were
most important when drought occurred.

It is interesting to notice that the factors governing
age class 0+ per capita growth rate are the same than
those driving age class 2+ and older (Table 1). And
also the same factors were found significant in the
five-parameter nonstructured model. These results
might indicate that the effect of climatic and endog-
enous drivers is not limited to a single age class, but
influences the whole population dynamics. There is an
indication that the youngest and the oldest year classes
of these populations are limited by the same con-
straints.

A synthetic finding of this study is that separated
populations have a common coordinated response to
exogenous factors, suggesting that they fluctuate with
a certain degree of synchrony. Because this is a
general approach to the dynamics of the studied
populations, no specific analyses on synchrony were
conducted, but if the observed effect is a consequence
of synchrony among populations, then it is likely that
exogenous agents (i.e., spring NAO) are responsible
for it via the Moran effect (so synchrony among these
populations is due mainly to a synchronising exoge-
nous agent).

Exogenous drivers

The five-parameter nonstructured model and also the
age-structured models, which are all consistent in their
significant explanatory variables, indicate that low
negative values of spring NAO in year t + 1 tend to
reduce the pgr of the year t (kt = Nt+1 ⁄Nt). This may
indicate a climatic control of the recruitment because
of spring weather conditions experienced by newly
emergent fry, which is to some extent expectable. But
also it may highlight that the abundance of the oldest
age class is controlled by the climate, as well.

A nonlinear positive effect of winter NAO in year
t + 1 on pgr of year t means that high or low values of
winter NAO lead to an increase in the pgr, while more
moderate values will lead to a lower pgr.

Borgstrøm & Museth (2005) linked recruitment and
size of the 0+ fish with accumulated snow depth and
summer temperatures in Norway, which are variables
related to winter NAO. In the same context, Hari et al.
(2006) found that an upward shift of the brown trout
thermal habitat, which is highly correlated with winter
NAO, in combination with temperature-related prolif-

erative kidney disease, explained the decrease in total
catch of brown trout in Switzerland.

In general, winter mean value of the NAO index is
found to have ecological significance, but some
studies have found significant relationships between
spring NAO and very different biological events such
as bird migration (Hubálek 2003), car-killed deer
during spring related to deer condition (Mysterud
2004) and the onset of vegetation in spring and
subsequent deer calf performance (Pettorelli et al.
2005). No relationship has been documented before
between spring NAO and fish population dynamics,
but surprisingly, spring NAO has been found signif-
icant in both selected models.

Many studies have demonstrated the relationship
between stream flow regime (Lobón-Cerviá & Mor-
tensen 2005; Lobón-Cerviá 2007b; Alonso-González
et al. 2008) and water temperature (Borgstrøm &
Museth 2005) and brown trout population dynamics,
so both variables represent good candidates to be the
local exogenous factors through which NAO can
drive brown trout abundance dynamics in larger
areas. In relation to this, significant negative corre-
lations between the NAO index and local weather
variables, such as daily rainfall (Gallego et al. 2005;
Rodrigo & Trigo 2007), or river habitat variables,
such as stream flow regime (Trigo et al. 2004;
Gámiz-Fortis et al. 2008a,b) have been found in the
Iberian Peninsula. Mean rainfall in winter has also
been negatively related to NAO in the study area
(Ebro valley and the eastern Cantabric area; López i
Bustins 2007). Exploratory analyses of monthly NAO
values versus stream flow have found a negative
relationship among these variables that explains up to
17% and 25% of mean flow in March in low reaches
of the Bidasoa (Atlantic) and Arga (Mediterranean)
rivers, respectively, which are the major catchments
in the study area. Mean stream flow in March can be
a prior actor in the mechanisms through which winter
NAO can influence dynamics of the studied popula-
tions, which Lobón-Cerviá (2007a,b) also showed in
a Cantabric stream. Supporting Lobón-Cerviá &
Rincón (2004) evidences of nonlinear influence of
flow in March on trout recruitment, our alternative
six-parameter nonstructured model has shown that
too low or too high values of spring NAO – and
therefore spring flow – would lead to a decrease in
pgr. This alternative model also showed a negative
relationship between winter NAO and pgr. Winter
NAO is negatively related to flow in March
(r2 = 0.39) and thus high positive values of winter
NAO may lead to low flows in March which may
actually limit the habitat available to newly emergent
fry, which is a life stage that is known to be
characterised by highly territorial behaviour in this
species (Elliott 1994).
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Endogenous drivers

It has been found a positive effect of density in years
t)1 and t)2 on kt. Per capita growth rate of age class
0+ is positively influenced by the density in year t)2,
which can be identified as a 3-year lagged positive
feedback tracing the upward trend of stock-recruitment
curve, as was observed by Nicola et al. (2008). The
generation time for brown trout is equal to or higher
than 2 years, and this fact explains the lagged density
dependence k1,t = f(Nt)2) because trout born in year
t)2 are the parents of trout born in year t + 1, and, as
explained above, Nt shows a high correlation with N1,t.

There is a positive relation between Nt)2 and k3,t,
and, similarly, k2,t is positively affected by Nt)1, which
may reflect the effect of the presence of a strong cohort
in the population. As there is a strong correlation
among Nt and N1,t, individuals of age class 0+ in year
t)2 will be 2+ in year t (affecting k3,t), and 0+ in year
t)1 will be 1+ in year t (affecting k2,t). Therefore the
strength of a cohort has a positive effect on the whole
population that can be detected throughout the time.

A negative effect of the population density in year t
has been found to drive pgr in the same year,
according both to the nonstructured model and to the
age-structured model. This 1-year lagged negative
feedback shows the downward trend of density
dependence. The value of the carrying capacity can
be obtained from the fitted models by making kt = 1
and solving Nt. The driving mechanism of this effect
can be a type of an intercohort competition by which
1+ density negatively affects 0+ density in a given
year t. However, this endogenous factor not only
influences the youngest age class but also the oldest
one which may indicate the effect of another type of
intracohort competition.

Endogenous factors have been found to be the
major driving forces in the regulation of populations of
anadromous brown trout inhabiting predictable envi-
ronments such as those described by Elliott (1994).
However, evidence for this is scarce for resident
brown trout, and existing evidence mainly describes
relationships among density and physiological traits
such as individual growth (Jenkins et al. 1999; Post
et al. 1999; Lobón-Cerviá 2007a). Nicola et al. (2008)
searched for evidence of density dependence in
recruitment in several exploited brown trout popula-
tions in the Iberian Peninsula and found that data of all
populations could be fitted to a Ricker stock–recruit-
ment curve, but most of them were in the density-
independent part of the curve, suggesting that density
was not high enough for negative feedback to operate.
When analysing endogenous population regulation
from age-structured data, Nordwall et al. (2001) found
that when 1+ density was artificially reduced, 0+ and
1+ trout densities increased the following year. They

also verified an inverse relationship between 0+
abundance and that of the oldest cohorts for a given
year.

The results of this study need to be extended in
several ways: (i) the mechanistic explanation to the
effects identified in this work has to be addressed; (ii)
other climatic interconnection indices should be tested
[e.g., Arctic Oscillation (AO), Western Mediterranean
Oscillation (WeMO)] that are known to drive Euro-
pean and low Ebro valley (López i Bustins 2007)
regional weather to improve the description and
prediction capabilities of the models; (iii) specific
studies aimed to detect and quantify the synchrony
among the studied populations should be conducted;
(iv) on the basis of this phenomenological approach,
downscaling could lead to finding more local drivers
through which NAO influences populations dynamics,
thus improving the mechanistic approach to under-
standing the large-scale dynamics of brown trout
populations; (v) this mechanistic approach might also
lead us to a sounder interpretation of the observed
nonadditive effects of density and spring NAO on the
mean growth rate (pgr) of the studied set of popula-
tions.

Large-scale population models can be used by
fisheries managers to explain fluctuations of the
abundance of brown trout in a region, and also to
make short-term predictions of the quantitative status
of the resource they are managing. Nonstructured
models seem to be more appropriate to be used for
prediction purposes than age-structured models. Con-
servation issues also claim for the relevance of large-
scale approaches, especially in the Iberian Peninsula
where brown trout exhibits a wide variety of pheno-
types and five operative conservation units have been
proposed. This result highlights the importance of a
management scheme based on larger areas.
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Olson, D., López, H.L., Reis, R.E., Lundberg, J.G., Sabaj
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Hubálek, Z. 2003. Spring migration of birds in relation to North
Atlantic Oscillation. Folia Zoologica 52: 287–298.

Jenkins Jr, T.M., Diehl, S., Kratz, K.W. & Cooper, S.D. 1999.
Effects of population density on individual growth of brown
trout in streams. Ecology 80: 941–956.

Jonsson, N. & Jonsson, B. 2004. Size and age of maturity of
Atlantic salmon correlate with the North Atlantic Oscillation
Index (NAOI). Journal of fish biology 64: 241–247.
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