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Abstract. Remotely sensed data with different spatial resolutions are being used as the primary information
source for the analysis of forest fragmentation. However, there is currently a lack of appropriate methods that
allow for the comparison of forest fragmentation estimates across various spatial scales. To provide insights into
this problem we analyzed a forested study area in central Spain and a set of 10 widely used fragmentation
indices. Forests were mapped from two simultaneously gathered satellite images with different spatial resolu-
tions, 30 m (Landsat-TM) and 188 m (IRS-WiFS). TM forest data were transferred to WiFS resolution through
different aggregation rules and compared with actual WiFS data. We found that incorporating sensor point
spread function (which replicates the real way in which remote sensors acquire radiation from the ground) greatly
improved comparability of forest fragmentation indices. We found a poor performance of power scaling laws for
estimating forest fragmentation at finer spatial resolutions, and suggest that the true accuracy and practical utility
of these scaling functions may have been overestimated in previous literature. Finally, we report an unstable
behavior of three cell-based fragmentation indices (clumpiness, aggregation, and patch cohesion indices), for
which spuriously high values can be obtained by resampling forest data to finer spatial resolutions. We believe
that the results and guidelines provided may significantly contribute to an adequate analysis and comparison
across scales of forest fragmentation estimations. FOR. SCI. 51(1):51–63.
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FOREST FRAGMENTATION is the process through
which formerly large and continuous extensions of
forests turn into a set of small and isolated patches

(Haila 1999). It is recognized as one of the major threats for
the conservation of the biodiversity and the ecological func-
tions of forests (Harris 1984, Forman 1995, Rochelle et al.
1999, Loyn and McAlpine 2001). The harmful conse-
quences of forest fragmentation for certain species derive
from three main causes: reduction of the size (area) of the
remaining forest patches, increased isolation of the frag-
ments and loss of overall connectivity, and increased edge
effect and disturbances from the surroundings (Saunders et
al. 1991, Forman 1995, Haila 1999, Santos and Tellerı́a
1999). Forest fragmentation affects the abundance, richness,
and dispersal ability of forest-dwelling species (Iida and
Nakashizuka 1995, Gill and Williams 1996, Gibson et al.
1988, Merriam 1998, Haila 1999, Rochelle et al. 1999,
Santos and Tellerı́a 1999).

For these reasons, fragmentation indices can serve as
spatial indicators for assessing whether critical components
and functions of forests are being maintained. It is suggested
that they should be considered as biodiversity indicators in
national forest inventories (Newton, A.C., and V. Kapos.
2002. Biodiversity indicators in national forest inventories.
Unasylva vol. 53, no. 209, available at: www.fao.org/
DOCREP/005/Y4001E/Y4001E09.htm); for example, re-

cently the Third Spanish National Forest Inventory includes
several spatial indices related to fragmentation in the as-
sessment of the condition of forested habitats (Ministerio de
Medio Ambiente 2004). Also, fragmentation may be con-
sidered as an indicator of ecologically sustainable forest
management (Parry et al. 2000, Brown et al. 2001, Loyn and
McAlpine 2001), as already incorporated in the Working
Group on Criteria and Indicators for the Conservation and
Sustainable Management of Temperate and Boreal Forests
(Montreal Process Liaison Office, 2000).

In this context, there is a growing interest in analyzing
and monitoring forest fragmentation (e.g., Pastor and Bros-
chart 1990, Skole and Tucker 1993, Riitters et al. 2003,
Wade et al. 2003). This requires the availability of spatial
pattern indices that are able to adequately quantify and
summarize the forest cover changes that are considered
relevant for the analyzed ecological processes; many such
fragmentation-related indices have been developed in recent
years (Haines-Young and Chopping 1996, Schumaker 1996,
Trani and Giles 1999, Jaeger 2000, He et al. 2000, Bogaert
et al. 2004, McGarigal, K., S.A. Cushman, M.C. Neel, and
E. Ene. 2002. FRAGSTATS: Spatial Pattern Analysis Pro-
gram for Categorical Maps. University of Massachusetts,
Amherst. Available at www.umass.edu/landeco/research/
fragstats/fragstats.html). The spatial data required for the
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analysis of forest fragmentation are currently easily avail-
able due to the rapid development of earth observation
systems in the last decades. The management of forest
patterns and fragmentation requires information at the land-
scape scale rather than at the stand or management unit
scale (Loyn and McAlpine 2001, Haynes 2002). Therefore,
satellite images are being increasingly used as the primary
source of information for the analysis of forest fragmenta-
tion (Skole and Tucker 1993, Vogelmann 1995, Blanco and
Garcı́a 1997, Sachs et al. 1998, Chuvieco 1999, Luque
2000, Peralta and Mather 2000, Hansen et al. 2001, Imber-
non and Branthomme 2001, Betts et al. 2003, Sader et al.
2003).

However, the need for reliable and robust methods for
evaluating forest fragmentation is hampered by the high
sensitivity of fragmentation indices to the scale of the ana-
lyzed forest maps. In the case of satellite images and the
digital forest maps derived from their classification, the
scale (degree of detail) is fixed by the spatial resolution
(pixel size) of the remote sensor, which determines the size
of the smallest object that can be discriminated on the
ground. There is currently a wide variety of remote sensors
with different spatial resolutions that allow for mapping of
forests at multiple scales, and therefore a need exists for
comparing and integrating multiscale forest data.

Several studies have analyzed the effect of spatial reso-
lution on different landscape pattern indices, some of them
related to fragmentation (Turner et al. 1989a, Benson and
MacKenzie 1995, Wickham and Riitters 1995, Frohn 1998,
Wu et al. 2000, 2002, Saura 2001, 2004, Wu 2004). It is
known that there are large differences in the values of the
fragmentation indices derived from satellite images with
different spatial resolutions, but the appropriate scaling
methods to render them comparable are still lacking (Saura
2004, McGarigal et al. [see above for web site]). For the
practical use of fragmentation indices it has just been rec-
ommended to not compare the values of the indices when
they have been measured at different spatial resolutions
(e.g., Turner et al. 1989b, McGarigal et al. [as above], Wu
2004). This is a particularly limiting factor when multiscale
forest data are increasingly available for analysis due to the
advances in remote sensors and geospatial techniques.

There is an urgent need for practical scaling techniques
that allow an improved comparability of forest fragmenta-
tion estimations derived from remotely sensed data with
different spatial resolutions, and we intend to provide new
insights in this respect in this study. To fully solve this
scaling problem, adequate techniques for both upscaling
and downscaling fragmentation estimations should be de-
veloped. The upscaling problem consists in aggregating
forest data so that the actual index values corresponding to
coarser spatial resolution sensors are accurately replicated.
Benson and MacKenzie (1995) concluded that majority
aggregation rules applied to categorical maps were adequate
for these purposes. This has been assumed so in other
studies on scale and landscape pattern indices, in which
majority rules have widely been used to upscale landscapes
configuration (Turner et al. 1989a, Wickham and Riitters

1995, Frohn 1998, Saura 2001, Wu et al. 2002, Wu 2004).
However, Saura (2004) found considerable differences be-
tween the index values upscaled using majority rules and
the actual remote sensor values. Saura (2004) suggested that
the real way in which remote sensors acquire radiation from
the ground should be specifically taken into account (via the
sensor point spread function) to improve comparability of
fragmentation indices across spatial resolutions. However,
no quantitative results on this respect were presented by
Saura (2004), and we wish to do so for the first time in this
study.

The problem of downscaling forest fragmentation esti-
mations (i.e., predicting the values of fragmentation indices
at finer spatial resolutions than the one existing in available
forest data) may be expected to be even more complicated
than the upscaling counterpart. Upscaling is, in summary,
the process of combining, selecting, and reducing a large
amount of detailed information for the purposes of compar-
ing to coarser spatial resolution data. On the contrary,
downscaling implies predicting an index value correspond-
ing to fine-scale forest maps that are not available and that
in principle cannot be recreated by combining the informa-
tion existing in coarse-scale forest data. However, different
authors have found that certain scaling laws (mainly power
functions) accurately describe the variations of fragmenta-
tion indices with spatial resolution (Frohn 1998, Saura
2001, Wu et al. 2002, Saura 2004, Wu 2004). It has been
suggested that these scaling laws may be used to predict
index values at multiple scales (Frohn 1998, Wu 2004).
Saura (2004) suggested that this may be the only operational
procedure to downscale fragmentation estimations, al-
though no quantitative results were provided in this respect.
We explore this possibility within this study. Finally, we
also analyze the sensitivity to remote sensor spatial resolu-
tion of several available forest fragmentation indices that
have not been considered in previous subject-related stud-
ies, as is the case of clumpiness index, aggregation index,
radius of gyration, or mean nearest neighbor distance.

Methods
Satellite Images and Forest Data at Different
Spatial Resolutions

Two simultaneously gathered satellite scenes covering
the same area in Spain (Figure 1) with different spatial
resolutions were selected for this study: a Landsat-TM
(Thematic Mapper) scene with 30 meter resolution (ac-
quired on the 29th Sept. 1999 at 10:32), and an
IRS-1D-WiFS (Wide Field Sensor on board the Indian
Remote Sensing Satellite 1D) scene with 188 meter resolu-
tion (acquired the same day at 11:33). Both TM and WiFS
sensors present bands in the red (R) and near-infrared (NIR)
wavelengths: 620–680 nm (R) and 770–860 nm (NIR) for
WiFS and 630–690 nm (R) and 760–900 nm (NIR) for TM
(e.g., Chuvieco 2002). These two bands are particularly
useful for forest mapping and monitoring, with healthy
green vegetation presenting a low reflectance in the red
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wavelengths (due to the absorption of red light by chloro-
phyll and other pigments) and a high reflectance in the
near-infrared wavelengths (due to the internal structure of
plant leaves) (e.g., Lillesand and Kiefer 1994, Chuvieco
2002).

Both scenes were geometrically rectified to the Spanish
Forest Map (scale 1:50,000) with root mean square error
slightly lower than one pixel. The overlapping area between
the two geometrically rectified images was divided into four
quadrants (Figure 1), each covering 3405 � 3388 pixels in
the Landsat-TM data, in which the indices could be com-
puted with available hardware and software. This also al-
lowed subsequent evaluation of the robustness of our results
across the different quadrants.

The forests in the images were classified through the
maximum likelihood method, using the R and NIR bands as
the spectral information and defining four land cover types
(forest, agricultural, urban, and water bodies) for the clas-
sification. The same classification training areas were se-
lected on the Spanish Forest Map corresponding to pure
pixels for both TM and WiFS images to ensure compara-
bility of the forest classifications at different spatial resolu-
tions. After classification, cover types were merged into
forest and nonforest areas, resulting a classification accu-
racy of 96% evaluated on a set of independent polygons
delimited on the Spanish Forest Map (both for TM and
WiFS images). This high accuracy was important in the
context of our study to minimize the potential impact of
classification errors in the values of the forest fragmentation
indices (Wickham et al. 1997), and therefore isolate as
much as possible the true effect of spatial resolution. The
Spanish Forest Map (scale 1:50,000) for the study area was
obtained from the interpretation of aerial photographs (ac-
quired on 1998) combined with preexisting maps and field

inventory data (collected in 2000). It is developed in coor-
dination with the Third Spanish National Forest Inventory
(Ministerio de Medio Ambiente 2004). The minimum map-
ping unit is in general 6.25 ha, lowering to 2.2 ha in the case
of forest patches embedded in a nonforest land use matrix.

The original (nonclassified) TM image was aggregated
to WiFS resolution through two different filters (aggrega-
tion before classification). First, through a mean (low-pass)
filter that assigned to each degraded pixel the mean of the
TM pixels falling within that WiFS pixel (Figure 2). Sec-
ond, a filter based on the point spread function (PSF) of the
WiFS sensor was applied to replicate more closely the
actual way in which remote sensors acquire radiation from
the ground. The weights for this PSF filter were extracted
for the specific PSF estimated for the WiFS sensor in the
thermo-vacuum (Electro Optical Systems group 2002), with
a single symmetrical PSF filter adopted for both WiFS
bands (Figure 2). PSF quantifies the contribution of differ-
ent objects to the signal recorded by the sensor for a certain
pixel depending on their position on the ground, with ob-
jects located near the pixel center contributing more
strongly than those further from it (Cracknell 1998, Huang
et al. 2002, Saura 2004), as shown in Figure 2. In reality
there is an overlap between the areas on the ground from
which the sensor captures the radiation for contiguous pixels
(Cracknell 1998, Huang et al. 2002, Saura 2004) (Figure 2).
The resultant aggregated images were classified with the same
method and training areas used for the original images.

Also, the forest data in the classified TM image were
degraded to WiFS resolution with two filters equivalent to
those described earlier, but adapted to categorical data (ag-
gregation after classification). First, we applied a conven-
tional majority filter (with all TM pixels weighting equally
within the aggregation window, Figure 2) and a PSF-based

Figure 1. Location in the map of Spain of the study area and the four quadrants into which it was
divided.
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filter in which the weights for pixel counts depended on
their position within the aggregation window, as given by
the WiFS PSF shown in Figure 2.

We thus obtained a set of five forest maps at WiFS
resolution for each quadrant from the following data: the
original and classified WiFS data, the first aggregated and
later classified TM data (two maps, one for the mean filter
and another for the PSF filter), and the first classified and
later aggregated TM data (two maps, one for the majority
rule and another one for the PSF categorical filter). By
comparing the actual WiFS forest map with those derived
from the aggregation of TM data, we could analyze which
upscaling procedure is more adequate for estimating actual
fragmentation at coarser scales, and which are the errors
corresponding to each of these aggregation methods.

Forest Fragmentation Indices

We considered a wide set of 10 spatial indices that are
being commonly used to characterize landscape patterns
fragmentation (Forman 1995, Haines-Young and Chopping
1996, Trani and Giles 1999, McGarigal et al. [see Introduc-
tion for web site]). These indices include those that are
being used for quantifying forested habitat fragmentation
within the Third Spanish National Forest Inventory (Minis-
terio de Medio Ambiente 2004), as well as several others.
These indices are regarded as forest fragmentation indices

because they are all sensitive to the breaking apart (dissec-
tion) of forests. All the indices were computed at the class
level in categorical (classified) forest data via Fragstats
software (McGarigal et al. [see Introduction for web site]),
considering the 8-neighborhood rule for the definition of the
forest patches (two forest pixels are assumed to belong to
the same patch if they share one of their sides or one of their
vertices). Here we provide only a brief description of the
indices. Further details may be found in general references
on landscape metrics (Forman 1995, Haines-Young and
Chopping 1996, Trani and Giles 1999, McGarigal et al. [see
Introduction for web site]), as well as in the specific ones
provided below for each of the indices. The 10 analyzed
indices are:

Number of patches (NP). NP is one of the most basic
fragmentation indices (e.g., Turner and Ruscher 1988,
Trani and Giles 1999), with higher NP indicating greater
forest fragmentation. Since here we are not comparing
landscapes with different spatial extents, NP is equiva-
lent to other widespread indices such as patch density
(McGarigal et al. [see Introduction for web site]) or the
PPU index (patch per unit area) used by Frohn (1998),
and thus the conclusions for NP apply equally to them.

Mean patch size (MPS), obtained as the arithmetic mean of
the areas of the forest patches. This is a simple and com-
mon forest fragmentation index (e.g., Turner and Ruscher

Figure 2. Relative weights of the filters applied to degrade the original and classified TM images (30 m) to
WiFS spatial resolution (188 m).
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1988, Trani and Giles 1999, Löfman and Kouki 2003),
with lower MPS indicating greater fragmentation.

Largest patch index (LPI). LPI is the percentage of total
landscape area occupied by the largest-sized forest patch
(McGarigal et al. [see Introduction for web site],
Löfman and Kouki 2003).

Mean radius of gyration (RG), defined as the mean distance
between each cell in the forest patch and its centroid,
and summarized as the average for all forest patches in
the study area (McGarigal et al. [see Introduction for
web site]). This metric is affected by the size and
compaction of forest patches, with higher values indi-
cating lower fragmentation.

Edge length (EL). An edge is defined as the length of any
side shared between two pixels belonging to different
classes. EL is regarded as a good indicator of forest
fragmentation (Li et al. 1993), with more fragmented
patterns yielding higher EL values. Edges defined by the
map border are not included in EL. Since here we are
not comparing landscapes with different spatial extents,
EL is equivalent to other widespread indices, like edge
density (Saura and Martı́nez-Millán 2001, McGarigal et
al. [see Introduction for web site]).

Mean nearest neighbor distance (NN), defined as the mean
Euclidean straight-line distance between each forest
patch and the nearest neighboring forest patch, which is
a commonly used index that increases with forests’
isolation (Trani and Giles 1999, McGarigal et al. [see
Introduction for web site]).

Clumpiness index (CI), which ranges between �1 and 1. CI
equals �1 when the forest is maximally fragmented
(e.g., all forest patches as single isolated pixels), equals
0 when the forest is randomly distributed, and ap-
proaches 1 when the forests are maximally aggregated
(a single patch comprising all forest pixels in the area).
CI is calculated from the number of adjacencies (shared
pixel sides) between forest pixels and between forests
and other cover types in the map (McGarigal et al. [see
Introduction for web site]).

Patch cohesion (PC) index. PC is given by

PC � 100 � �1 �
�i�1

NP pi�i�1
NP pi � �ai

� � �1 �
1

�N�
�1

, (1)

where pi and ai are, respectively, the perimeter and the area
of each of the NP forest patches, and N is the total
number of pixels in the landscape; ai and pi are ex-
pressed respectively as the number of pixels and pixel
edges of a forest patch (Schumaker 1996). This way,
when all forest patches are confined to single isolated
pixels PC attains its minimum value (PC � 0), while PC
reaches the maximum (PC � 100) when a single forest
patch fills the whole landscape. Higher PC values indi-
cate lower forest fragmentation. Schumaker (1996)
found that PC was better linearly correlated with the
dispersal success of northern spotted owl in old-growth
forests than other commonly used landscape indices.
Tischendorf (2001) partially supported this result.

Landscape division (LD). LD is defined as the probability
that two randomly chosen places in the landscape are
not situated in the same forest patch (Jaeger 2000).
Higher LD values indicate increased forest fragmenta-
tion. It is computed as

LD � 1 � �
i�1

NP �ai

AT
�2

, (2)

where AT is total landscape area. Jaeger (2000) also defined
two additional indices (effective mesh size and splitting
index) that can be directly obtained from LD values.

Aggregation index (AI), ranging from 0 to 100, with higher
values indicating lower fragmentation (He et al. 2000).
AI equals 0 when the forest patches are all single iso-
lated pixels and equals 100 when all the forest com-
prises a single compact patch (He et al. 2000, McGarigal
et al. [see Introduction for web site]). AI is calculated
from the number of adjacencies (shared pixel sides)
between the forest pixels in a map (He et al. 2000,
McGarigal et al. [see Introduction for web site]).

We can quantify the mean sensitivity to spatial resolution
of the indices in the whole data set (SM) with the expression
(O’Neill et al. 1996, Saura and Martı́nez-Millán 2001, Saura
2002),

SM � 100 �
�i�1

4 �Ii
188 � Ii

30�
4 � SD

, (3)

where I30 and I188 are, respectively, the values of the frag-
mentation index for the forest data at spatial resolutions of
30 meters (Landsat-TM) and 188 meters (IRS-WiFS) in
each of the quadrants. SM is obtained as the mean absolute
difference between I30 and I188 in the four quadrants divided
by SD. SD is the standard deviation of the index, and was
estimated on a wide set of 72 Landsat-TM patterns covering
a wide range of class abundances (Saura 2001, 2004). SD
indicates the different range of variation of each index. SM

expresses the percentage of the index absolute variation due
to changes in spatial resolution normalized by their overall
range of variation in landscape patterns (as estimated by
SD).

Scaling Laws for Estimating Forest
Fragmentation at Finer Scales

Different authors have experimentally found that the
variations of several fragmentation-related indices with spa-
tial resolution can be described through scaling power laws
(Frohn 1998, Saura 2001, 2004, Wu et al. 2002, Wu 2004),
as follows

I�x� � k � xE, (4)
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or, equivalently,

log�I�x�� � k� � E � log�x�, (5)

where I(x) is the value of the index corresponding to the
spatial resolution x (length of a cell side), k and k� are
constants, and E is the slope of the double-log linear rela-
tionship between I and x or, equivalently, the exponent that
characterizes the power law.

In this study we will focus on the three very common
fragmentation indices (NP, MPS, and EL) for which power
scaling laws have been reported consistently among differ-
ent authors and study areas (Frohn 1998, Saura 2001, 2004,
Wu et al. 2002, Wu 2004). NP and EL follow decreasing
power functions (with E � 0 in Equations 4 and 5), while
MPS follows an increasing power function (with E 	 0 in
Equations 4 an 5) (Saura 2004, Wu 2004). These three
indices are also among the most sensitive to spatial resolu-
tion effects (as will be shown later), and therefore are those
for which the effort on developing appropriate scaling tech-
niques is more needed.

Fractal theory has shown that scale-invariant fragmenta-
tion processes yield power distributions of fragment sizes
(Feder 1988, Korvin 1992), which in that case would be
related to the power-law scaling behavior of fragmentation-
related indices like NP, MPS, or EL. Saura (2004) suggested
that if indeed these power laws were sufficiently invariant
across a wide range of spatial resolutions, they may be
useful for downscaling forest fragmentation estimations
(i.e., estimating index values at finer spatial resolutions).
However, this has not been previously tested and we wish to
analyze this possibility within this study.

For these purposes, we aggregated the original WiFS
image to a spatial resolution of 376 meters through a 2 � 2
mean filter. This degraded image was classified with the
same training areas and procedure described before, and the
index values were computed on the classified forests at that
resolution. The coefficients describing the power laws for
NP, MPS, and EL (Equations 4 and 5) were obtained from
the index values at a spatial resolution of 188 (original

WiFS image) and 376 meters (WiFS image aggregated
through a 2 � 2 filter). These power laws were used to
estimate the index values at the target TM resolution (30 m)
without using any information from the TM image (only
WiFS image and its aggregation were used for this estima-
tion). Comparison of actual TM index values (those directly
computed on the TM image) with the ones estimated
through the power laws allowed us to analyze the accuracy
of this downscaling procedure. Fitting the power laws to a
larger set of index values (by further aggregating WiFS
image at spatial resolutions coarser than 376 m) provided
less accurate downscaling results, and therefore we will
focus on the results corresponding to the estimation proce-
dure described above.

Results and Discussion
Sensitivity of Forest Fragmentation Indices to
Spatial Resolution

Most forest fragmentation indices are greatly affected by
changes in spatial resolution in the four quadrants (Table 1),
as noted in previous researches for some of these indices
(e.g., Benson and MacKenzie 1995, Wu et al. 2002, Saura
2004). Indices like NP, MPS, EL, RG, or NN are very
sensitive and not at all suitable for direct comparison across
scales (Tables 1 and 2). On the contrary, LPI, CI, PC, LD,
or AI are found to be considerably more robust to spatial
resolution (Table 2). The indices that are little affected by
the amount of small forest patches in a map are also those
considerably robust to spatial resolution effects, as de-
scribed in previous researches (Saura 2002, 2004).

The effects of cell size on AI was specifically evaluated
by He et al. (2000) through simulated random maps (per-
colation maps) and real tree species distribution maps ob-
tained from point field survey (not remotely sensed data).
He et al. (2000) found that the variation of AI values with
spatial resolution was much more pronounced on random
maps than on real tree species distribution data. This can be
explained by the lack of spatial autocorrelation of simple

Table 1. Fragmentation index values for the actual TM and WiFS forest data (30 and 188 meters of spatial resolution, respectively) and for the
TM forest data aggregated to WiFS resolution before (mean and PSF filters) and after classification (majority and PSF categorical filters)

Index

Quadrant 1

Actual
TM

Actual
WiFS

TM aggregated to WIFS
before classification

TM aggregated to WIFS
after classification

Mean
filter

PSF
filter

Majority
filter

PSF
filter

Number of patches 18,648 644 863 677 936 702
Mean patch size (ha) 26.60 802.08 615.99 792.88 540.86 721.98
Largest patch index 45.54 48.10 49.24 49.83 47.05 47.27
Mean radius of gyration (m) 35.07 209.55 197.71 217.64 178.42 196.79
Edge length (km) 32,831 5,207 6,171 5,226 6,509 5,488
Mean nearest neighbor (m) 88.84 544.20 505.59 531.17 528.84 573.09
Clumpiness index 0.905 0.907 0.891 0.908 0.885 0.904
Patch cohesion 99.97 99.87 99.82 99.83 99.83 99.84
Landscape division 0.793 0.769 0.758 0.752 0.779 0.777
Aggregation index 95.04 95.28 94.66 95.55 94.08 95.04
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random maps, which are unrealistic models of forest pat-
terns (Schumaker 1996, Saura and Martı́nez-Millán 2000).
These simple random maps present a much larger number of
small patches than real-world forest patterns and therefore
can largely overestimate the effects of spatial resolution on
some fragmentation indices (Saura 2001). In the case of the
remotely sensed forest data analyzed in this study, the
sensitivity of AI was much lower than for the point field
survey data analyzed by He et al. (2000). This suggests that
AI may be particularly useful for comparing the degree of
forest fragmentation when estimated from remotely sensed
data with different spatial resolutions.

Most of the indices indicate lower forest fragmentation at
coarser spatial resolutions in the four quadrants (NP, MPS,
EL, LPI, RG, LD), as shown in Table 1. This is an expected
result, since forest patches that are mapped as separate
fragments at finer resolutions may merge into larger ones at
broader scales, at which also many small fragments will not
be detected (e.g., Hlavka and Livingston 1997). However,
three of the indices (PC, CI, AI) behave in the opposite way,
and lower values (that indicate higher fragmentation) are
generally obtained for coarser data (Table 1). This has only
been previously reported for the PC index (Saura 2004). It
is not a coincidence that these three indices are those be-
having in such an unexpected way. This is due to the fact
that these three are cell-based fragmentation indices (that
can only be computed on raster data), unlike the rest of the
indices considered in this study. These three indices are
computed on the basis of unitless magnitudes such as the
number of forest cells in a forest map or the number of
shared edges between forest and nonforest cells (Schumaker
1996, He et al. 2000, McGarigal et al. [see Introduction for
web site]), regardless of the real magnitudes these areas or
lengths represent in the ground. When a forest map is
resampled to finer spatial resolutions (as in Figure 3,
through the nearest-neighbor method), the values of PC, CI,
and AI increase (thus indicating lower fragmentation) due to
this cell-based character, even when the underlying forest
pattern and its degree of fragmentation remains unchanged

(Figure 3). The rest of the fragmentation indices do remain
unchanged in this case. Furthermore, it is possible to obtain
an arbitrarily large value of any of these three indices by
simply resampling the forest pattern to finer spatial resolu-
tions (Figure 3). This illustrates that the values of PC, CI,
and AI should be interpreted with caution, paying special
attention to the way the forest maps have been previously
processed and manipulated.

The nearest neighbor index (NN) also indicates higher
forest fragmentation and isolation at coarser spatial resolu-
tions in the four quadrants (Table 1). In this case this is not
due to a pixel-based character of the index, but to the
absence at coarser scales of a large amount of small forest
patches that are present in fine-scale forest maps. Since the
distance to the nearest-neighbor forest is determined regard-
less of its size, the small forest fragments scattered through-
out the landscape contribute to produce a decrease in the
distance at which the closest forest patch is encountered at
finer scales. From an ecological point of view, it may be
more meaningful to consider the distance to the closest
forest of a certain minimal size, like the 100 ha suggested by
Santos and Tellerı́a (1999) for the forests of central Spain.
These large forests can function as recolonization sources
for vertebrates populations (Santos and Tellerı́a 1999). A
version of the NN index using a minimum forest patch area
threshold would also likely be more robust to spatial reso-
lution effects.

Upscaling Fragmentation Indices through
Forest Data Aggregation

TM images aggregated through mean filters produced
clearly more fragmented forest patterns than those directly
obtained from WiFS data for all the quadrants, as indicated
by NP, MPS, EL, or RG (Table 1). Incorporating sensor
point spread function (PSF) in the aggregation process
greatly improved comparability of forest fragmentation in-
dices (Table 1). Relative aggregation errors (absolute value
of the difference between actual WiFS and TM-aggregated

Quadrant 2

Actual
TM

Actual
WiFS

TM aggregated to WIFS
before classification

TM aggregated to WIFS
after classification

Mean
filter

PSF
filter

Majority
filter

PSF
filter

37,614 1,115 1,430 1,047 1,556 1,183
9.87 375.39 286.37 397.50 239.22 313.79
30.44 36.49 34.65 35.52 31.28 18.94
34.10 223.12 210.16 242.52 205.64 237.24
49,080 9,521 10,859 9,244 10,820 9,228
84.53 496.37 482.94 515.71 501.53 527.71
0.846 0.820 0.797 0.828 0.790 0.821
99.94 99.77 99.69 99.71 99.66 99.44
0.907 0.867 0.880 0.874 0.902 0.949
90.08 89.24 87.66 89.70 86.47 88.46

Continued
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index values divided by actual WiFS values) were reduced
in average (for all quadrants and indices) more than three
times (from 11.4% to 3.2%) by considering PSF instead of
mean-rule aggregation. This improvement was much
greater for some of the most sensitive indices, with aggre-
gation errors reduced from 20–30% to 1–6% for MPS and
from 30–50% to 5–13% for NP (as derived from Table 1).
Some other indices like LPI, PC, or LD did not show
important improvements in their comparability by incorpo-
rating PSF. These indices are themselves quite robust to
spatial resolution effects (Tables 1 and 2) and therefore they
may not require the aid of very accurate scaling techniques
to render their values comparable. When aggregation was
performed in already classified forest data, results were
qualitatively similar, with PSF-based categorical filters gen-
erally performing better than majority filters (Table 1).
However, aggregation error was reduced more slightly by
considering PSF than in the case of original nonclassified
satellite images (Table 1), and in average it decreased from
11.1% (majority filter) to 6.3% (PSF categorical filter). One
must consider whether the original remotely sensed data
(and not only the forest maps obtained from the classifica-
tion) are needed to accurately transfer forest fragmentation
estimations to coarser scales. If standard aggregation rules
are used (such as mean or majority filters) our results
suggest that it may be enough to aggregate directly the
digital forest maps through majority rules, since mean ag-
gregation errors in both cases averaged about 11% (both for
mean and majority filters). However, if PSF is incorporated
to achieve a higher accuracy (which is especially needed for
some of the most sensitive and common fragmentation
indices), results may improve considerably by applying the
PSF-aggregation to the original remotely sensed data (3.2%
mean aggregation error) rather than to the classified forest
maps (6.3% mean aggregation error).

Overall, these results suggest that standard filters (such
as mean or majority filters) are not fully adequate to
scale-up forest data derived from remotely sensed data, as
noted by Saura (2004). The limitation of mean or majority
filters for scaling remotely sensed forest data occurs be-

cause they do not take into account the real way in which
sensors acquire the radiation from the objects on the ground.
The area on the ground from which the sensor acquires the
radiation for each pixel is not a homogeneous and perfectly
delimited square piece of land, as may be suggested by the
squared-pixel structure in which information is organized
within an image. On the contrary, the digital value assigned
by the sensor to any given pixel is the result of contributions
not only from the area strictly corresponding on the ground
to that pixel, but also from objects (forested areas) located
in neighboring pixels (Cracknell 1998, Huang et al. 2002,
Saura 2004), as shown in Figure 2. This introduces an
additional degree of spatial autocorrelation in remotely
sensed data that is not replicated by mean or majority filters.
Also, the objects located near the center of the pixel con-
tribute more strongly to the output signal than those farther
from it (Cracknell 1998, Huang et al. 2002, Saura 2004).
This true way of radiation acquisition is only conveniently
taken into account via the sensor point spread function
(Figure 2), which made possible the improved scaling of
forest fragmentation estimations reported for the first time
in this study.

A high variability of indices like number of patches and
mean patch size has also been reported related to factors
other than spatial resolution, like image processing methods
or temporal variability between the satellite images (Brown
et al. 2000, Herzog and Lausch 2001, Saura 2002). These
indices are particularly sensitive to any subtle difference in
the spatial characteristics of the forest data being compared.
For these indices, a more accurate calibration of the images
may be required to allow precise estimations of forest
fragmentation. This may imply the need for accurate atmo-
spheric calibrations to reduce the differences due to nonco-
incident dates of image acquisition. It may also require
incorporating sensor PSF to improve comparability across
satellite images with different sensor spatial resolutions. In
both cases, knowledge of error magnitudes in the analysis of
forest fragmentation can be used to distinguish actual
changes in forest patterns from spurious changes in index

Table 1. Continued

Index

Quadrant 3

Actual
TM

Actual
WiFS

TM aggregated to WIFS
before classification

TM aggregated to WIFS
after classification

Mean filter PSF filter
Majority

filter
PSF
filter

Number of patches 35,338 1,220 1,736 1,315 1,517 1,147
Mean patch size (ha) 6.21 177.99 136.72 182.66 137.88 179.98
Largest patch index 11.99 12.55 14.83 15.27 12.25 12.39
Mean radius of gyration (m) 35.50 230.52 200.07 223.51 206.35 232.81
Edge length (km) 32,611 6,331 7,983 6,935 7,006 5,921
Mean nearest neighbor (m) 100.88 613.39 561.17 616.39 613.72 652.70
Clumpiness index 0.859 0.826 0.798 0.826 0.810 0,834
Patch cohesion 99.75 98.62 98.90 98.98 98.56 98.63
Landscape division 0.985 0.984 0.978 0.976 0.985 0.984
Aggregation index 88.85 86.23 84.35 86.61 84.44 86.75
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values resulting from variability in images and forest maps
(Brown et al. 2000).

Downscaling Forest Fragmentation Indices
through Power Laws

Using power laws to estimate the index values at finer
spatial resolutions did not provide accurate results for any of
the four quadrants (Table 3). Relative estimation errors
(absolute value of the difference between actual TM and
power-law estimated index values divided by actual TM
index values) varied between 51% and 177% for NP, be-
tween 31% and 64% for MPS, and between 17% and 71%
for EL (Table 3) when only the two spatial resolutions (188
and 376 m) closest to the target TM resolution (30 m) were
used to determine the power law coefficients. These esti-
mation errors resulted much larger as we considered addi-
tional spatial resolutions (coarser than 376 m and farther
apart from the target resolution of 30 m) for determining
power law coefficients. These results suggest that power
laws, which apparently describe very accurately the way
these indices vary with spatial resolution (Frohn 1998, Wu
et al. 2002, Saura 2002, Wu 2004), are not really adequate
for estimating forest fragmentation at finer spatial resolu-
tions in our study area and range of spatial resolutions. Very
high coefficients of determination (R2) have been obtained
when fitting power laws to the values of these indices on
series of aggregated data, for example higher than 0.96 for
NP and higher than 0.99 for EL (Frohn 1998, Saura 2004).
However, these power laws have been fitted as linear re-
gressions of logarithmic transformations of the variables
(index values versus spatial resolution, as given by Equation
5). As noted by Saura (2004) these logarithms tend to
underestimate largest residuals and thus may provide in-
flated R2 values that do not reflect the true accuracy of these
scaling functions.

Wu (2004) concluded that these scaling laws may pro-
vide practical guidelines for scaling spatial patterns, and that
indices with simple scaling relationships (as the power laws
found for NP or EL) reflect those landscape features that
can be extrapolated or interpolated across spatial scales

readily and accurately. Similar arguments were provided by
Frohn (1998). However, we found a poor performance of
these power laws when used for a practical case of down-
scaling forest fragmentation estimations (Table 3). If these
power laws are not useful for downscaling fragmentation
indices, their practical value remains considerably limited,
since they are not really helpful for upscaling forests’ con-
figurations, either. As noted by Saura (2004), the coeffi-
cients of the power law for upscaling index values cannot
easily be known a priori for a given forest pattern. Rather,
they must be empirically determined by fitting the power
law to the index values computed on aggregated data. In this
case, little is gained by fitting a power law, since the index
value at a certain spatial resolution can just be obtained by
directly computing it on aggregated data. In this case, the
crucial issue is which is the upscaling method that mini-
mizes the aggregation errors (as discussed in the previous
section). Fitting a scaling law will not improve the accuracy
of the upscaling procedure; on the contrary, it would add to
the already existing aggregation error the statistical error
coming from the fit of the power law to the aggregated data.

Our results suggest that there are no invariant scaling
laws that may be used to transfer forest fragmentation
estimations across scales, at least not across the range of
spatial resolutions considered in this study (from 188 to 30
meters). However, further research considering different
ranges of spatial resolutions and forest patterns may provide

Table 2. Mean sensitivity (SM) to remote sensor spatial resolution of
the 10 analyzed forest fragmentation indices

Index Mean sensitivity (SM)

Number of patches 367.5
Mean patch size (ha) 1810.9
Largest patch index 8.1
Radius of gyration (m) 6110.5
Edge length (m) 440.2
Mean nearest neighbor (m) 4597.9
Clumpiness index 48.4
Patch cohesion 109.6
Landscape division 7.3
Aggregation index 28.4

Quadrant 4

Actual
TM

Actual
WiFS

TM aggregated to WIFS
before classification

TM aggregated to WIFS
after classification

Mean
filter

PSF
filter

Majority
filter

PSF
filter

38,209 1,362 2,044 1,540 1,698 1,207
2.48 66.66 47.36 63.22 46.52 62.77
4.15 3.58 3.53 3.71 1.97 1.88
35.05 198.86 177.02 198.49 178.02 200.80
27,216 5,135 6,364 5,442 5,304 4,351
109.63 678.07 623.16 673.67 657.35 747.19
0.764 0.710 0.662 0.713 0.661 0,712
99.44 97.41 97.02 97.18 96.16 96.25
0.998 0.999 0.999 0.998 0.999 0.999
78.55 73.49 69.31 73.97 68.71 73.32
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further insight on this scaling problem. For example, it is
important to note that for all indices and quadrants, power-
law extrapolations greatly overestimated the actual frag-
mentation existing in the TM forest patterns (Table 3),
which is a systematic prediction bias. Some recent studies
(Hlavka and Dungan 2002) concluded that log-normal func-
tions fit better to size distributions of forest burn scars than
the fractal power laws considered here, and this may also
apply to fragmentation-related indices like NP, MPS, or EL.
Hlavka and Dungan (2002) fitted power laws to their size
distributions and found that while R2 values were high, “the
estimates for the leftmost size class (the smallest sizes) in
the size distribution were often more than twice the ob-
served values.” The same result was obtained in our study:
power laws predicted a much larger number of small forest
patches than those observed in the actual TM data, which
resulted in overestimation of forest fragmentation at that
spatial resolution (Table 3). Hlavka and Dungan (2002)
suggested that, even if actual patch sizes have a fractal
power law distribution, observed sizes will be log-normally
distributed due to pixelation effects occurring when land-
scapes are represented in raster spatial data sets. It remains
to be tested whether this also fully applies to the effect of
spatial resolution on fragmentation indices. If this is the
case, log-normal functions may further improve the predic-
tion of the index values at finer scales than have been
obtained here through power laws.

Conclusions

Forest fragmentation estimates are in general very sen-
sitive to spatial resolution effects, and their accurate com-
parison across scales can be more complicated than for
other forest characteristics that are commonly estimated
from remotely sensed data such as their areal extent. This is

particularly true for some of the most commonly used forest
fragmentation indices, like number of patches, mean patch
size, edge length, or mean nearest neighbor patch. For these
indices, particularly accurate scaling techniques are needed
to render their values comparable across spatial resolutions.

The typical recommendation is that fragmentation index
values should only be compared when obtained from forest
maps with the same spatial resolution. This condition is
indeed necessary for many indices. However, we have
shown that the same spatial resolution is not enough to
warrant an appropriate and unbiased comparison of forest
fragmentation estimates, as commonly assumed in land-
scape analysis literature. Even when different forest maps
are converted to the same cell size fragmentation indices
may still remain noncomparable, depending on how these
forest maps have been generated and manipulated. First,
cell-based fragmentation indices such as aggregation index,
clumpiness index, or patch cohesion are very sensitive to
common spatial transformations like resampling. The risk
of obtaining spuriously high values of these indices should
be carefully considered. Second, we have shown that incor-
porating PSF is needed to improve comparability of forest
fragmentation estimates across sensor spatial resolutions.
Previous studies on scale and landscape pattern indices have
used standard aggregation rules like mean or majority rules
to coarsen patterns to a certain desired spatial resolution.
These standard aggregation rules are widely available in
GIS and image processing software, but may not be the
most appropriate for upscaling forest patterns for fragmen-
tation. PSF-aggregation is recommended instead, consider-
ing that the PSF of most earth observation sensors is avail-
able, either published or by contacting the appropriate space
agency.

Several recent studies have found scaling laws (typically

Figure 3. Values of patch cohesion (PC), clumpiness index (CI), and aggregation index (AI) for the same
pattern resampled at different spatial resolutions.

Table 3. Number of patches, mean patch size, and edge length values corresponding to actual TM forest data and to the predictions at that spatial
resolution (30 m) obtained from power laws estimated by the aggregation of WiFS data (“WiFS to TM power law”)

Index

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

TM
actual

WiFS to TM
power law

TM
actual

WiFS to TM
power law

TM
actual

WiFS to TM
power law

TM
actual

WiFS to TM
power law

Number of patches 18,648 51,586 37,614 69,594 35,338 53,283 38,209 91,504
Mean patch size (ha) 26.60 9.71 9.87 5.85 6.21 4.32 2.48 1.28
Edge length (km) 32,831 38,328 49,080 65,735 32,611 44,041 27,216 46,612
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power laws) describing the variations of fragmentation in-
dices with spatial resolution. We suggest that the practical
utility of these scaling functions may be considerably lim-
ited, despite their apparent good statistical fit to indices
variations. We have shown that power laws do not allow an
accurate downscaling of forest fragmentation estimates in
our study area and range of spatial resolutions. Also, for an
accurate upscaling of a fragmentation index it may be
unimportant whether or not a certain type of consistent
scaling law has been reported for that index, since the
coefficients of those scaling laws corresponding to a certain
forest pattern cannot be known a priori. The relevant issue
is which is the appropriate aggregation technique for repli-
cating index values at coarser sensor resolutions, as dis-
cussed in this study.

There is a growing demand for adequate techniques that
allow transferring forest fragmentation estimates across
scales. Otherwise, the risk of biased and unstable fragmen-
tation estimations may greatly limit the usefulness of this
kind of quantitative analysis of forest patterns. In this con-
text, we believe that this study has provided relevant guide-
lines and insights on the scaling techniques that may allow
an improved comparability of forest fragmentation esti-
mates at different spatial resolutions.
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