
Landscape Ecology15: 661–678, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

661

Landscape patterns simulation with a modified random clusters method

Santiago Saura∗ & Javier Mart́ınez-Millán
Departamento de Econom´ıa y Gestión de las Explotaciones e Industrias Forestales, E.T.S. Ingenieros de Montes,
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Abstract

A new modified random clusters method for the simulation of landscape the matic spatial patterns is presented.
It produces more realistic and general results than landscape models that have been commonly used to date in
the field of landscape ecology. Simulated patterns are said to be realistic, apart from their patchy and irregular
appearance, because the values of the spatial indices as a function of habitat abundance measured in real landscape
patterns (number of patches, edge length and patch cohesion index) can be replicated with the proposed landscape
model. It allows a wide range of spatial patterns to be obtained, in which fragmentation and habitat abundance can
be systematically and independently varied. Furthermore, a degree of control over the irregularity of the shapes of
the simulated landscapes can be achieved, and it is also possible to simulate patterns with anisotropy. The proposed
method is easy to implement and requires little computation time, which enhances the practical possibilities of this
method in different areas of landscape ecology.

Introduction

The development of methods for the simulation of
landscapes and other categorical spatial data patterns
has focused the attention of many researchers in the
past years (Gardner et al. 1987; Gardner et al. 1991;
O’Neill et al. 1992; Gustafson and Parker 1992; Li
et al. 1993; Li and Reynolds 1994; Gotway and
Rutherford 1996; Moloney and Levin 1996; Myers
1996; Srivastava 1996; With et al. 1997; With and
King 1997; Hargis et al. 1998), mainly due to their
potential usefulness in different areas of landscape
ecology. However, the results are often partial and non
realistic, and a general model that accounts for the
different broad-scale landscape patterns that exist in
reality is still lacking. This paper presents a new simu-
lation method that provides more general and realistic
results than commonly used landscape models.

The objective of a landscape pattern simulation
method is not to reproduce the exact location of the
habitat types of the pattern, but to generate realizations

that account for the information that is considered
relevant for the process under study (Gotway and
Rutherford 1996). The spatial patterning of landscapes
influences many ecological phenomena (the processes
under study), like animal population dispersal and
abundance, biodiversity, wildland fire spread, distur-
bance spread, etc. (e.g., Franklin and Forman 1987;
Fahrig and Merriam 1985; Wilcox and Murphy 1985;
Dorp and Opdam 1987; Andrén 1994; Wiens et al.
1997), and the information considered relevant for
those processes can be summarized in different land-
scape metrics, such as those relating to connectivity,
fragmentation, size and shape of the patches, habi-
tat abundance, and other spatial indices. A successful
landscape model should be able to provide patterns
that replicate the values of the spatial indices observed
in real landscapes.

Simulated patterns can be used as an input for other
modeling steps (Myers 1996), making it possible to
detect which component of spatial heterogeneity is
relevant for the phenomena under study. There are
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many modeling studies in which artificially generated
patterns have been used to explore the relationships
between landscape pattern and ecological processes
(Gardner et al. 1989, 1991; Turner et al. 1989a, 1991;
Palmer 1992; Green 1994; Lavorel et al. 1994, 1995;
With and Crist 1995; Gustafson and Gardner 1996;
With et al. 1997). Artificially generated patterns have
also been used to develop, evaluate, and compare
indices of landscape pattern, as well as to detect cor-
relation between them (Turner et al. 1989b; Li and
Reynolds 1993, 1994; Plotnick et al. 1993; Hargis
et al. 1998). A more detailed description of applica-
tions of landscape models in ecology can be found
in the review by With and King (1997), including the
use of simulated patterns as neutral landscape models.
Many other applications, not necessarily in the field of
landscape ecology, like the evaluation and comparison
of techniques for integrating and analysing spatial cat-
egorical data and the development and evaluation of
sampling designs, can produce relevant insights from
the use of simulated patterns (e.g., Zöhrer 1978; Brus
and Gruijter 1997).

However, the validity of these applications de-
pends upon the realism and generality of the landscape
model used. In so far as landscape models provide
partial and non realistic results, studies where they are
used are likely to produce non robust or misleading
results.

But, why should simulated maps be used for those
purposes instead of real landscape patterns? Li et al.
(1993) used computer simulation because field ex-
perimental and chronological approaches were not
feasible due to expense, time requirements, lack of ex-
perimental controls, and difficulties of finding suitable
study sites. Lam (1990) stated that images simulat-
ing remote sensed data would be especially useful for
benchmark or theoretical studies which may involve a
large number of images. Besides the time and money
requirements that the use of real images may involve,
the results obtained from the landscape patterns of a
concrete area may not be applicable to other areas with
different spatial characteristics nor comparable with
the results of other authors at other study sites. That
is to say, the use of some particular data could limit
the scope of application of the modeling results.

Figure 1. Percolation map forp = 0.55 (marked pixels are shown
in lighter color).

A brief review of existing landscape simulation
methods

It is not the purpose of this study to give a detailed de-
scription of these methods, but following are the main
characteristics of the different available approaches.
Existing simulation methods can be roughly classi-
fied in three groups: neutral landscape models, ex-
plicit simulation models and geostatistical simulation
methods.

Neutral landscape models

Neutral landscape models have been defined as those
that produce an expected pattern in the absence of spe-
cific landscape processes (Gardner et al. 1987; With
and King 1997). According to this definition, the pro-
posed modified random clusters simulation method
(hereafter MRC) can be considered a neutral model,
as it does not include any explanatory process of the
resultant spatial patterns.

Among the models included in this category (With
and King 1997), percolation maps have been the most
widely used (Gardner et al. 1987, 1989, 1991; O’Neill
et al. 1988; Turner et al. 1989a, 1991; Gardner and
O’Neill 1991; Gustafson and Parker 1992; Plotnick
et al. 1993; Andrén 1994; With and Crist 1995;
Gustafson and Gardner 1996; Wiens et al. 1997; With
et al. 1997). Percolation maps (simple random maps)
are grids in which each location is occupied with a
certain probabilityp (Figure 1); they were proposed as
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a neutral model for binary landscape mosaics (Gardner
et al. 1987).

However, simple random maps are not at all ade-
quate models of landscape patterns, as has been clearly
shown when compared with real landscapes. Perco-
lation maps have much more edge length and larger
number of patches than real patterns (Gardner et al.
1991); comparisons of patch cohesion are dramatically
different (Schumaker 1996), and also the cumulative
frequency distributions are clearly divergent (Gardner
et al. 1987). As stated by Srivastava (1996), one of the
criteria in choosing a simulation method is the visual
appeal of the final result, and in the case of percolation
maps this is not very high (Figure 1). In general, visual
inspection is valuable because it may anticipate the
results of more detailed analysis based on spatial in-
dices, which are of course needed for a non-subjective
comparison of spatial patterns.

The main limitation of simple random maps is their
complete spatial independence. In percolation maps,
the habitat type present in a pixel is statistically in-
dependent of the habitat type present in neighborhood
locations. However, real landscapes show positive spa-
tial autocorrelation (spatial dependence), which means
that if at a point of the landscape a certain habitat type
exists, it is more probable that the same type is the one
existing in the neighborhood locations (Palmer 1992).
Percolation maps have proved useful to detect the dif-
ferences between real landscapes and random patterns
(Gardner et al. 1987), but they should not be used as
landscape models because of their deficiencies in this
respect.

Other simulation methods created to address spe-
cific questions of landscape pattern often do not appear
realistic, probably because various aspects of land-
scape pattern were purposefully controlled, like maps
with contagion (Gardner and O’Neill 1991), random
clumps (Gustafson and Parker 1992), and hierarchical
maps (O’Neill et al. 1992).

A more recent approach is the use of the midpoint
displacement fractal algorithm (Saupe 1988). This can
be adapted to obtain thematic patterns with a patchy
appearance in which, according to With et al. (1997)
and With and King (1997), abundance and spatial con-
tagion of the habitat can be easily and systematically
varied.

Hargis et al. (1998) describe a simulation approach
that generates landscape patterns by adding patches
from a data base to a map and placing them at random
locations until the desired percentage of occupancy is
reached. The patches included in that data base were

Figure 2. Three different neighborhood criteria for identifying clus-
ters in step B of the simulation. Pixels considered neighbors of the
central pixel (x) are shown in darker color.

109 actual timber clearcut harvest patches from the
Uinta Mountains of Northern Utah (USA), which may
limit the results of the analysis to that particular kind
of landscape patterns.

Explicit landscape models

These simulation models reproduce the landscape pat-
terns resulting from the actuation of certain processes
that are explicitly included in the model. Thus, these
are explanatory models, unlike the neutral models
described earlier. Examples of this category are the
model by Moloney and Levin (1996) that simulates the
spatial and temporal ecological dynamics occurring in
a specific annual serpentine grassland in California,
or the one developed by Li et al. (1993) to simulate
the landscape fragmentation resulting from different
forest cutting patterns.

Geostatistical simulation methods

The spatial simulation methods developed in the field
of geostatistics to simulate the spatial distribution of
categorical variables (Deutsch and Journel 1992; Got-
way and Rutherford 1996) are included in this group.
These methods require fairly comprehensive informa-
tion about the statistical properties of the pattern to be
simulated, such as variograms, covariance functions,
etc.

One of the most interesting characteristics of the
MRC method (and also of some of the neutral models
mentioned before) is that it allows simulating com-
plex structures with simple algorithms that require
little or no previous information. This is what Guzmán
et al. (1993) call ‘simplicity of construction and com-
plex appearance of the final result’. Also, computation
times required to produce one simulation may be im-
portant to evaluate the performance of a simulation
method. In this sense, some of the geostatistical meth-
ods cannot be considered fast at all: ‘Though all
methods are workable in practice, some require several
days of run-time on fast computers to produce a single



664

realization despite their author’s enthusiastic claims of
speed. Such procedures cannot be a practical basis for
producing many realizations.’ (Srivastava, 1996).

Methods

Description of the modified random clusters
simulation method

The modified random clusters simulation method
(MRC) is a grid-based model that generates thematic
spatial patterns on squared lattices, which in the fol-
lowing description will be assumed to haveL2 cells
(whereL is the linear dimension of the map). Al-
though it could be used for the simulation of any
categorical spatial data, it has been developed for its
potential interest as a landscape model. The MRC
simulation method comprises the following four steps.

(A) Percolation map generation
The parameter that controls this step is the initial prob-
ability p. For each of theL2 pixels of the image a
random numberx (0 < x < 1), taken from a uniform
distribution, is compared withp, and if x < p, then
the pixel is marked. Thus, a map is obtained in which
approximatelyp · L2 pixels are marked (Figure 1).
These simple random maps have been the subject of
intensive studies in the context of percolation theory,
where they have been used as a model for different
physical properties, and their characteristics, which
change as a function ofp, are well known (Stauffer
1985; Feder 1988; Bunde and Havlin 1991). They
have also been used as landscape models, but they
have severe limitations in this respect, mainly due to
their complete spatial independence, as noted earlier.
In MRC, percolation maps are only the first step of
the simulation, and its characteristics are considerably
modified in the following steps.

(B) Clusters identification
In this step, clusters composed of pixels marked in
step A are identified. A cluster is defined as a set of
pixels that have some neighborhood relation between
them. Depending on the neighborhood criterion used,
clusters will be very different, and so this is another
parameter that influences simulation results. The cri-
terion used to generate all the MRC patterns shown in
this paper (except landscape 3 in Figure 15) is the 4-
neighbourhood rule: pixels are considered to belong to
the same cluster if they are adjacent horizontal or ver-
tically, but not along the diagonals (Figures 2 and 4).

Other criteria can also be used (e.g., 8-neigbourhood
(Figure 2), which also considers pixels along the di-
agonals to be neighbors), but no relevant differences
in the simulated patterns are produced by the use of
different symmetric criteria, in the sense that no signif-
icant increase in the variety of the simulated patterns
is achieved (Saura 1998).

However, the use of asymmetric neighborhood cri-
teria (Figure 2) leads to patterns with anisotropy, that
is, with patches orientated in certain direction (Fig-
ure 15, landscape 3). The ability to reproduce this kind
of non isotropic thematic patterns is of great interest,
as they often appear in land cover or geological maps.

(C) Clusters type assignation
In this step, one type (class or category) is assigned to
each of the clusters that were identified in the previous
step. The objective is to transform a map with hun-
dreds or thousands of clusters in a map withn types
(Figure 4), each of them occupying a percentage of
the area of the mapAi(i = 1 . . . n,

∑i=n
i=1Ai = 100).

In this step types are assigned only to thep ·L2 pixels
that were marked in step A of the simulation, thus ob-
taining theAi percentages with respect to thosep ·L2

cells.
When clusters are small, types can easily be as-

signed in such a way thatp · L2 · Ai pixels belong to
categoryi of the thematic image. However, in perco-
lation maps the size of the clusters increases withp.
In particular, the size of the largest cluster of the map
dramatically increases near the percolation threshold
(pc), and forp > pc a large cluster appears connect-
ing opposite sides of the lattice and occupying most
of the area of the map, as shown in Figure 3 (for
the 4-neighborhood rule and large mapsp ∼= 0.5928
(Stauffer 1985; Ziff 1986)). Thus, all the possible
combinations ofAi values can only be achieved for
p < pc. This is by no means a limitation for the gen-
erality of simulation results, as will become apparent
later.

In the computer program where the MRC simula-
tion method has been implemented (SIMMAP, Saura
1998), steps B and C take place simultaneously, as-
signing types to the clusters at the same time as they
are being identified.

(D) Filling in the image
This is a key step of the simulation that makes it pos-
sible to obtain simulated landscape patterns with the
necessary degree of spatial dependence, which look
patchy like real landscapes.
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Figure 3. Size of the largest cluster as a function ofp for L = 400, expressed as percent of the area occupied with respect to the totalL2 pixels
of the map (continuous line) or with respect to thep ·L2 marked pixels (dashed line). Percolation threshold (pc ∼= 0.593 for the 4-neighborhood
criteria) is marked by the vertical line.

After the previous three steps an image has been
obtained in which approximatelyp · L2 pixels have
been assigned to one of then types, while the rest
((1 − p) · L2) have no category assigned as yet. In
this step, the most frequent type among the 8 neigh-
borhood cells is assigned to each of those(1−p) ·L2

cells (notice that not all neighbor pixels may have a
type assigned before step D. These unclassified pix-
els are not included in the frequencies count). In case
of a tie between two types, one of them is randomly
assigned. This is similar to 3× 3 modal filters used
in digital image processing techniques (Thomas 1980;
Chuvieco 1990; Homer et al. 1997).

Thus, categories are assigned depending on those
existing in the neighborhood pixels (spatial depen-
dence). If none of the 8 neighborhood pixels has any
type assigned before step D (that, is none of them was
marked in step A of the simulation, which occurs when
p is low) one of the types in the map is randomly
assigned, but the probability of assigning each type
is equal to its percentage of occupancy (Ai). This en-
sures that in the resulting map approximatelyAi · L2

pixels will belong to each of the categories.

Other rules for ‘filling in’ the images were also
tested but either did not show significant differences
from the one described above or provided results that
did not address the objectives of the simulation method
(Saura 1998).

After this step the simulation process is complete
(Figure 4), and a pattern composed of patches with an
intermediate level of spatial dependence is obtained
(note that we use the term ‘patches’ to denominate
the patterns obtained after step D and ‘clusters’ to
denominate patterns prior to step D).

Simulation parameters in the modified random
clusters method

The parameters that control simulation results in MRC
method are:
– Initial probabilityp (step A).
– Neighborhood criteria (step B).
– Number of types (classes) of the thematic pattern

(n) and percentage of area of the map occupied by
each of them (Ai).
And, if there is no interest in simulating patterns

with anisotropy, the neighborhood criteria can be set
to 4-neighborhood with no significant loss of vari-
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Figure 4. An example to illustrate the simulation steps that make up the modified random clusters method (p = 0.52, 4-neigborhood criteria,
n = 3,L = 50 pixels). Pixels with no class assigned before step Dare shown in black.

ety of the simulated patterns. It is, then, a simple
simulation method, controlled by a small number of
simulation parameters and easy to implement for any
of the purposes described in the introduction.

In MRC the initial probabilityp is not related to
the abundance of the types in the map, as percentages
of occupancy are determined by cluster type assigna-
tion (step C). This is the opposite of what occurs in
percolation maps, and so special care should be taken
in order to avoid confusion. In MRCp controls the
degree of fragmentation or aggregation of the patches,
as is clearly shown in Figure 5. Whenp is small,
patches are more numerous and smaller, and thus pat-
terns are more fragmented. Asp increases, the number
of patches decreases and its mean and maximum size
increase, resulting in more aggregated landscapes. As
shown in Figure 5, the increase in the size of the
patches as a function ofp is not linear, but more rapid
asp is nearerpc(pc ∼= 0.593 for the 4-neighborhood
criteria).

As explained before, any desired percentages of
occupancy of then habitat types (Ai) can be obtained
for any p < pc. There is no need to use values of
p > pc, because maps with a dominant type (a type
that occupies most of the area of the map) can be
generated for any value ofp by fixing theAi values
accordingly. Furthermore, this makes it possible to
control the degree of fragmentation of the patches em-
bedded in the dominant matrix, by simulating patterns
with the sameAi but different initial probabilityp, as
shown in Figure 6. This differentiation of abundance
of the classes of the thematic pattern and probabilityp

is one of the keys of the improvements in this method,
as it allows separate control of fragmentation and habi-
tat abundance, which in percolation maps are mixed
and confused.

In MRC, percolation maps are only the first step of
the simulation, and its characteristics are considerably
modified by the following steps. In fact, very different
thematic images can be obtained from the same perco-
lation map. Figure 15 clearly shows how the modified
random clusters simulation method expands and im-
proves the simulation possibilities of simple random
maps.

Simple random maps are just an extreme case of
the MRC patterns, characterized by complete spatial
independence, that are obtained whenp = 0. In this
case type assignation is done entirely at random in
step D (steps A, B and C do not take place), produc-
ing a map in which the type existing in a particular
pixel is not related statistically to those existing in
the neighborhood cells. At the other extreme, there
is maximum spatial dependence in a categorical map
when all the pixels of a certain category belong to
the same patch. Between these unrealistic extremes all
the intermediate degrees of spatial dependence can be
obtained by varying the initial probabilityp, so that
spatial dependence is higher asp increases.

It should be noted that MRC is a stochastic simula-
tion method, that is, multiple random realizations can
be obtained for the same set of simulation parameters,
which differ in the exact location of the types of the
pattern but are similar in their overall spatial structure.

Landscape metrics for the quantification of
simulation results

As Figures 5, 6, 12, 13, 14 and 15 show, patterns gen-
erated with the modified random clusters method are
remarkably realistic, in the sense that they look patchy
and irregular as real landscapes usually do.
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Figure 5. Six simulated binary landscapes (n = 2) with the same percentages of occupancy (A1 = A2 = 50%) but generated for different
values of the initial probabilityp. In all the imagesL = 200 pixels.
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Figure 6. Four simulated landscapes in which the dominant habitat type occupies 80% of the area, but each of them generated for different
values ofp. The four patterns have 6 habitat types and their size is 200× 200 pixels.

To evaluate the realism of the simulations in quan-
titative and non subjective terms, we generated a set of
MRC binary simulated patterns (n = 2) and computed
the values of number of patches (NP), edge length
(EL), patch cohesion index (PC) and area weighted
mean shape index (AWMSI) corresponding to patches
of class 1. These indices were selected because MRC
results could be compared with other simulation meth-
ods and published real landscape data and were par-
ticularly suitable for discriminating between simple
random patterns and MRC maps.

All simulated patterns were 400× 400 pixels and
the clusters were identified using the 4-neighborhood
criterion (step B of the simulation). The percentage
of occupancy (A1, A2 = 100− A1) was varied from
1% to 99% in steps of 1% (99 cases) and the ini-

tial probabilityp ranged from 0.01 to 0.6 in steps of
0.01 (60 cases). In all, 5940 landscapes were simu-
lated, in which percentage of occupancy and degree of
fragmentation were independently and systematically
varied. Also, 400× 400 pixel percolation maps were
generated with the same proportions of habitat (that
is, from 1% to 99% in steps of 1%), and 10 repli-
cations for each of the 99 cases, making a total of
990 maps. Patches in the landscape were defined us-
ing the 4-neighborhood rule, which is the one used by
most authors when computing landscape metrics (e.g.,
Gardner et al. 1987, 1991; Turner and Ruscher 1988;
With et al. 1997), although some others have used the
8-neighborhood rule (Schumaker 1996; Hargis et al.
1998).
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Figure 7. Number of patches as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.

Figure 8. Total edge length as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.
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Figure 9. Comparison between the number of patches of real landscapes in Georgia (large rhombs) and the simulated patterns. The upper
continuous line corresponds to simple random maps (p = 0) and the lower one to the simulated patterns obtained forp = 0.1.

Figure 10. Patch cohesion index (PC) as a function of percentage of occupancy (A1) for the set of MRC patterns. The continuous line
corresponds to the PC values for simple random maps (p = 0).
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Figure 11. Area weighted mean shape index as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.

Edge length is the sum of all the edges between
cells that are horizontally or vertically adjacent and
belong to different habitat types. EL is a good index
of fragmentation (Li et al. 1993), taking lower values
as the pattern is more aggregated.

The patch cohesion (PC) index (Schumaker 1996),
has the following expression:

PC =

1−

i=m∑
i=1

pi

i=m∑
i=1

pi · √ai

 ·
[
1− 1√

N

]−1

,

wherepi and ai are respectively the perimeter and
the area of each of them patches of the habitat class
of interest, andN the total number of pixels in the
landscape (L2). The PC value is minimum (PC= 0)
when all patches of habitat are confined to single iso-
lated pixels, and maximum (PC= 1) when every pixel
is included in a single patch that fills the landscape
(Schumaker 1996).

The area weighted mean shape index (AWMSI)
has the following expression:

AWMSI =

i=m∑
i=1

pi

4
√
ai
· ai

i=m∑
i=1

ai

=

i=m∑
i=1

pi
√
ai

4
i=m∑
i=1

ai

,

wherepi andai are respectively the perimeter and the
area of each of them patches of the class of interest
in the landscape. AWMSI measures the irregularity
or complexity of the shapes of the patches, and its
value is minimum (AWMSI= 1) for perfect square
patches. This index uses patch area as a weighting fac-
tor because larger patches are assumed to have more
effect on overall landscape structure (Li et al. 1993;
Schumaker 1996).

Results and discussion

The results for number of patches (NP) and total edge
length (EL) are shown in Figures 7 and 8, where values
corresponding to percolation maps are shown in a con-
tinuous line. Simple random maps, which are obtained
as a particular case whenp = 0, produce the most
fragmented patterns of any that can be generated with
the MRC method. Below this upper limit, all degrees
of fragmentation can be obtained by varying the ini-
tial probabilityp. The upper limit for NP and EL of
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Figure 12. Six binary simulated patterns with the same habitat abundance (20%) and for the same initial probability (p = 0.2), but generated
under different initialA′1 values, with patches of type 1 later assigned to habitat type 2 until 20% of occupancy is reached. The nearer the initial
A′1 is to 50–60%, the more irregular and convoluted are the shapes of the patches. In each simulated pattern the initialA′1 value and the area
weighted mean shape index (AWMSI) of the obtained pattern are indicated. Obviously, in the caseA′1 = 20% (upper left), no reassignment of
patches was needed.
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MRC simulated patterns by no means limits its use as
a landscape model; Gardner et al. (1991) showed that
real landscapes have much less edge length and num-
ber of patches than percolation maps with the same
percentage of occupancy. The values of EL and NP
as a function of the percentage of occupancy for 27
forest/non-forest binary landscapes can be reproduced
with the modified random clusters method, as is appar-
ent from a comparison of Figures 7 and 8 in this paper
with figure 5 in Gardner et al. (1991).

To support this observation, values for the number
of patches as a function of the percentage of occu-
pancy for real landscapes were taken from Turner and
Ruscher (1988) and Turner (1990) and compared with
results for the MRC simulation method. Those land-
scape patterns were obtained from black and white
aerial photography of nine counties of Georgia (USA),
with scales ranging from 1:20.000 to 1:60.000. In all,
177 cases were taken from those data, which included
eight land cover categories (urban, agricultural, tran-
sitional, improved pasture, coniferous forest, upper
deciduous forest, lower deciduous forest and water),
and four different physiographic regions (mountains,
piedmont, upper and lower coastal plain). In order to
render the NP values comparable with one another and
with the 400× 400 cell simulated patterns, the num-
ber of patches was multiplied by the quotient between
400× 400 and the number of cells of each of the 177
raster maps (with sizes varying from 12.696 to 38.088
cells, each cell representing one hectare). In spite of
the variety of the data, MRC was effective for all the
values of the number of patches observed in these
landscapes (see Figure 9). In this figure, the number
of patches corresponding top = 0.1 is presented in a
continuous line, to emphasize that withp >= 0.1 we
could account for 173 of the 177 cases (97,7%). This
indicates that too low values of the initial probability
p are not adequate for landscape simulation, as they
are more fragmented than they appear in reality. In
fact, very low values ofp produce results too close
to complete spatial independence; in the limit case
(p = 0) the result was simple random maps which
bore little resemblance to real landscapes (Figure 9).
The same is true of total edge length, as a compari-
son of Figure 8 with Figure 5 in Gardner et al. (1991)
demonstrates. The maximum edge length is achieved
for 50% of habitat abundance (Figure 8), just as has
been shown to occur in real data from remote sensing
in the north of Costa Rica (Traub 1997).

No landscape model that produces a single value
of EL or NP for a fixed percentage of occupancy can

account for the diversity of cases that exist in real
landscapes, because a range of values can occur for
the same habitat abundance (see the data for Georgia
landscapes in Figure 9 and other landscape data, e.g.,
Traub 1997). In this sense, MRC provides a continuum
variation of the values of those spatial indices, which
is a significant improvement on some of the previously
existing landscape models.

However, these two indices (NP and EL) may cor-
relate only weakly with some ecological processes like
animal population dispersal, because pattern indices
that ignore habitat area are considerably biased by
small patches that contribute little or nothing to disper-
sal success (Schumaker 1996). Schumaker proposed
the patch cohesion index (PC) which, according to
the dispersal model used, correlated better with dis-
persal success than any other of the commonly used
landscape metrics. He computed the values of PC for
old-growth forests in the National Forests of the Pa-
cific Northwest of USA (a total of 2100 randomly
selected landscapes), with percentages of occupancy
ranging from 1% up to 33.4%. The observed PC val-
ues were in most cases over 0.9, and lower values
of PC were obtained only for sparse habitat, but al-
ways over 0.8. PC values for MRC simulated patterns
are shown in Figure 10. The figure illustrates how
simulated landscapes with high patch cohesion for all
the percentages of occupancy can be obtained, just as
occurs in the real patterns examined by Schumaker.
The MRC method, then, is able to generate the val-
ues of spatial metrics existing in real landscapes for
indices that seem to correlate strongly with ecological
processes. Again, PC values for simple random maps
are very different from those observed in landscapes
(Figure 10), as noted by Schumaker (1996). The dif-
ference in the slope for PC values corresponding to
percolation maps in Figure 10 in the present paper and
figure 9 in Schumaker (1996) is due to the different
criteria used to define patches here (4-neighborhood)
and by Schumaker (8-neighborhood). Each of the lines
tends to equal 1 near the percolation threshold, which
occurs at different values in both cases (around 59.3%
of occupancy for 4-neighborhood and 40.7% for 8-
neighborhood). Patch cohesion index is not sensitive
to landscape changes when a large percentage of the
landscape is occupied (Figure 10), which could be
a limitation for its use in that range of occupancy
percentages.

The results for the area weighted mean shape index
covered a wide range of values, as shown in Figure 11.
However, there is a clear dependence of AWMSI with
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Figure 13. A pattern with four habitat types (right,n = 4) is obtained after splitting the patch types of a binary landscape (left,n = 2).

Figure 14. Two simulated patterns with the same habitat proportions (n = 6) and obtained for the same initial probabilityp = 0.4 (L = 200
cells). However, the one on the right was generated by splitting the patch types of a binary pattern (n = 2) withA1 = A2 = 50%.

A1 and the greatest complexity of shapes is given by
habitat abundance around 55%. Of course, when habi-
tat is either very abundant or sparse patterns are not
complex; in extreme cases where all the habitat is
confined to single isolated pixels or where all the land-
scape is occupied by the same habitat type, AWMSI
would yield its minimum value (AWMSI= 1).

More general results as to patch shape index are
readily obtained: landscapes with a high AWMSI can
be generated (this occurs forA1 near 55%) and the
habitat abundance decreased later by reassigning the
type 1 patches to type 2 until the desired occupancy
percentage is reached. This is only possible ifp is not
too close topc (as in Figure 12, wherep = 0.2). In
this wayA1 is fixed depending more on the irregu-
larity of the shapes to be obtained than on the habitat
abundance, which can later be rearranged until the de-
sired percentage of occupancy is attained (Figure 12).
When simulating patterns with multiple types (n > 2),

similar devices can be used to have more control over
the complexity of patch shapes. By generating a binary
map (n = 2) forA1 = A2 = 50% (high AWMSI) and
splitting the patches in each of the two categories into
two new types (Figure 13), a four-type map (n = 4)
can be produced in which patch shapes are more com-
plex and less isodiametric than if the map was simply
simulated by fixing the desiredn andAi in step C (Fig-
ure 14). That is, maps can be generated with a value of
Ai for which a high AWMSI is obtained, and patches
can later be reclassified to obtain the desired number of
categories and proportions, resulting in patterns with
the high AWMSI corresponding to the initialAi . This
was also the method used to generate landscape 2 in
Figure 15. These methods increase the variety of the
simulated patterns that can be obtained with the MRC,
allowing more independent control of the patch shapes
of the simulated patterns than is possible by simple
variation of the initial probabilityp.
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Figure 15. Four simulated thematic patterns obtained from the same percolation map (up,p = 0.5). All have four habitat types (n = 4) and
a size of 200× 200 pixels. The rest of the simulation parameters are: (1)A1 = A2 = 22%,A3 = A4 = 28%. (2) Initially n = 2 and
A1 = 45%A2 = 55%, but patches were split into four habitat types (n = 4) withA1 = 23%A2 = 22%A3 = 53%A4 = 2%. (3) Asymmetric
neighborhood criteria,A1 = A4 = 28%A2 = A3 = 22% (4)A1 = 79%A2 = A3 = A4 = 7%.
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All the algorithms required for the simulation of
thematic patterns with the proposed MRC method
were implemented on a specific software, SIMMAP
(Saura 1998), with which all the simulated land-
scape patterns presented in this paper can be gener-
ated. SIMMAP also computes the indices described
in Landscape metrics for quantification of simulation
results section, as well as several others. As noted
earlier, the computational effort required to produce
one realization may be an important aspect to con-
sider when evaluating the performance of a simulation
method. MRC requires low computation times to gen-
erate one simulated landscape pattern: as implemented
on the SIMMAP program, and running on a standard
PC at 200 MHz, times per realization are around 1 s
(100× 100 pixels landscapes), 4 s (200× 200 pixels)
and 16 s (400× 400 pixels).

Conclusion

Many of the landscape models that have been used
in landscape ecology provide results that are par-
tial and often unrealistic. It is not surprising that
Schumaker (1996), comparing the patch cohesion of
landscapes with the values corresponding to perco-
lation maps, stated that “this analysis suggests that
the relationship observed here between patch cohe-
sion and dispersal success derives from a characteristic
property of real landscapes that is not found in sim-
ple artificial landscapes, and that studies of simulated
habitat pattern may thus provide little insight into the
extent to which habitat fragmentation actually alters
connectivity (. . . ).

These observations suggest that the use of
computer-generated landscapes could both inflate the
value of poor predictors of ecological quality and
diminish the power of useful indices”.

Indeed, in so far as landscape models are unable to
reproduce the values of the landscape metrics that are
found in reality, studies where they are used are likely
to produce non robust or misleading results.

The proposed modified random clusters simula-
tion method may be a significant improvement in this
sense, in that it provides more general and realistic
results than previous landscape models. It is more
realistic because the results presented in this study
show that MRC accounts for the values of the land-
scape metrics that have been observed in landscapes
as a function of percent of occupancy; and it is more
general in that the results of some other landscape

models are or may be considered particular cases of
the wide array of patterns that can be generated with
the proposed method.

MRC makes it possible to simulate landscapes
with every possible degree of fragmentation and spa-
tial dependence, ranging from the unrealistic extreme
of simple random maps to higher degrees of spatial
dependence and aggregation as the initial probability
p increases. Patterns with multiple habitat classes and
any abundance of each of the categories can be gen-
erated. Furthermore, it is possible to simulate patterns
with anisotropy, and to achieve some control over the
irregularity of the shapes of the simulated landscapes.

These results are achieved with simple algorithms
that are easily implemented and low time consuming.
This enhances the practical possibilities of this method
for modeling the effects of landscape configuration
on ecological processes and for the other purposes
mentioned in the introduction.
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