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Abstract

Analyzing the effect of scale on landscape pattern indices has been a key research topic in landscape ecology.
The lack of comparability of fragmentation indices across spatial resolutions seriously limits their usefulness
while multi-scale remotely sensed data are becoming increasingly available. In this paper, we examine the effect
of spatial resolution on six common fragmentation indices that are being used within the Third Spanish National
Forest Inventory. We analyse categorical data derived from simultaneously gathered Landsat-TM and IRS-WiFS
satellite images, as well as TM patterns aggregated to coarser resolutions through majority rules. In general,
majority rules tend to produce more fragmented patterns than actual sensor ones. It is suggested that sensor point
spread function should be specifically considered to improve comparability among satellite images of varying
pixel sizes. Power scaling-laws were found between spatial resolution and several fragmentation indices, with
mean prediction errors under 10% for number of patches and mean patch size and under 5% for edge length. All
metrics but patch cohesion indicate lower fragmentation at coarser spatial resolutions. In fact, an arbitrarily large
value of patch cohesion can be obtained by resampling the pattern to smaller pixel sizes. An explanation and
simple solution for correcting this undesired behaviour is provided. Landscape division and largest patch index
were found to be the least sensitive indices to spatial resolution effects.

Introduction

Quantification of landscape fragmentation through
pattern indices is currently a common practice in
landscape ecology and related disciplines. These in-
dices capture some of the spatial characteristics that
have been found relevant for different ecological or
physical processes �e.g., Forman 1995�. In particular,
fragmentation indices derived from remotely sensed
data are being increasingly used for landscape assess-
ment and land cover change characterization �Luque
et al. 1994; Sachs et al. 1998; Chuvieco 1999; Grif-
fiths et al. 2000; Luque 2000; Hansen et al. 2001;
Imbernon and Branthomme 2001�. Satellite images
are used as the primary source of spatial information

because they provide the digital mosaic of landcovers
convenient for the computation of these indices
�Chuvieco 1999�. At the same time, the development
of remote sensing and GIS has made available a wide
variety of spatial data. It is now possible to compare
and integrate landscape data at different scales.

Many studies have provided insights into the effect
of spatial resolution on landscape indices �Turner et
al. 1989a; Benson and MacKenzie 1995; Wickham
and Riitters 1995; Frohn 1998; Wu et al. 2000; Wu et
al. 2002�, which is related to the more general modi-
fiable areal unit problem �e.g., Openshaw 1984; Je-
linski and Wu 1996�. However, only the study by
Benson and MacKenzie �1995� directly compared
fragmentation indices computed on simultaneously
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gathered satellite images with different spatial resolu-
tions for the same landscape. Also, some recently in-
troduced indices �Schumaker 1996; Jaeger 2000�
have not been analyzed in previous studies. Although
it is well-known that there are large differences in the
values of the fragmentation indices derived from sat-
ellite images with different spatial resolutions, it is
not yet fully understood how fragmentation indices
are affected by spatial resolution. For the practical use
of fragmentation indices it is generally recommended
not comparing the values of the indices when they
have been measured at different spatial resolutions
�e.g., Turner et al. 1989b; McGarigal and Marks
1995�. Further studies are needed, because the lack of
comparability across scales seriously limits the
potential usefulness of quantitative analysis of land-
scape patterns.

This study analyzes the effect of spatial resolution
on several common indices that are being used to
characterise forest fragmentation within the Third
Spanish National Forest Inventory �Ministerio de
Medio Ambiente 2002�. We intend to provide further
insights into the following questions: how do these
fragmentation indices behave with varying sensor
spatial resolutions? Which fragmentation indices can
be directly compared across spatial resolutions?
When not, is it possible to correct their behaviour in
order to render comparable multi-scale fragmentation
estimates?

Data and methods

Spatial data

There are two main approaches to generate categori-
cal spatial patterns with different spatial resolutions
for a given landscape. The more common and sim-
pler one is spatial aggregation. Majority rules have
been commonly used for this purpose in landscape
ecology �Turner et al. 1989a; Benson and MacKenzie
1995; Wickham and Riitters 1995; Frohn 1998; Wu
et al. 2002�. These studies assumed that majority rules
could produce aggregated patterns adequately similar
to those directly mapped through remote sensors with
coarser spatial resolutions. The other approach is di-
rectly classifying simultaneously gathered satellite
images covering the same study area but with differ-
ent sensor spatial resolutions. This latter approach has
been less commonly used in landscape ecological
studies �but see Benson and MacKenzie 1995�.

This study considered both approaches. The aggre-
gation approach allowed us to easily generate spatial
data covering a wide range of spatial resolutions. Co-
etaneous satellite data were used to validate some of
the results obtained with aggregated data. They also
allowed for comparison of the patterns produced by
majority rules with those derived from coarser spatial
resolution satellites.

Landsat-TM and IRS-WiFS patterns

We selected two simultaneously gathered scenes cov-
ering the same area in central Spain �Figure 1� from
satellite sensors with different spatial resolutions: a

Figure 1. Location of the study area and the four zones in which the overlapping area between Landsat-TM and IRS-WiFS scenes was
divided.
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Landsat Thematic Mapper �TM� scene �30 meter
resolution� acquired on the 29th September 1999 at
10:32, and a IRS-1D-WiFS �Wide Field Sensor on
board the Indian Remote Sensing Satellite 1D� scene
acquired the same day at 11:33. Although the nomi-
nal spatial resolution of the IRS-WiFS sensor is 188
m �NRSA 1995�, the WiFS image was available as a
path-oriented data product resampled to 180 m �the
nearest neighbour method�. WiFS scene was regis-
trated to Landsat-TM with sub-pixel accuracy. The
full overlapping area was divided in four zones �Fig-
ure 1�, each covering 2,000 � 2,000 pixels in the
Landsat-TM data �360,000 ha�, for subsequent cross-
zone comparison.

Both sensors have red �R� and near infrared �NIR�
spectral bands �e.g., Chuvieco 2002�, from which we
computed the NDVI �normalized difference vegeta-
tion index� from the digital signal levels of the im-
ages:

NDVI �
NIR � R

NIR � R
�1�

NDVI has several characteristics suited for the dis-
crimination of vegetation patterns: it reduces the ef-
fect of slope and orientation in vegetation spectral
response, and positively correlates with forest canopy
cover, leaf area index, vegetation moisture and pro-
ductivity �e.g., Myneni et al. 1995; Chuvieco 2002�.

From the NDVI we generated several categorical
images for each zone and sensor. We selected thresh-
old values of the NDVI that classified the landscape
in two types: low-NDVI areas �class 1, sparse and/or
dry vegetation� and high NDVI areas �class 2, abun-
dant and/or vigorous vegetation�. The threshold val-
ues �different for TM and WiFS data� were selected
so that the high-NDVI class abundance �percent of
total area occupied by that class� was varied for each
sensor from 10% to 90% � � 1%� with interval 10%.
In total, we obtained 36 binary images for each of the
two sensors �9 for each of the four zones�. This
simple classification method allows obtaining a wide
range of class abundances. This is important because
class abundance has been shown to significantly in-
fluence the values and scaling behaviour of landscape
indices �e.g., Saura and Martínez-Millán 2001�.

It should be noted that some differences exist in the
red �R� and near infrared �NIR� bands for the WiFS
and TM sensors, and this has been shown to have
some impact on the resultant NDVI values �Teillet et

al. 1997�. The wavelengths of WiFS bands are 620-
680 nm �R� and 770-860 nm �NIR� while those of TM
are 630-690 nm and 760-900 nm �e.g., Chuvieco
2002�. The width of the red band is the same for both
sensors, but NIR band is much wider on the TM sen-
sor. There are also slight differences on the center
wavelengths for each band, but these differences tend
to have opposite effects on NDVI values �Teillet et
al. 1997�. That is, wider NIR bands tend to produce
lower NDVI values, while higher center wavelengths
for NIR bands implicate higher NDVI values. As a
result of these effects only small differences are ex-
pected between the NDVI obtained from TM and
WiFS sensors �an absolute difference smaller than
0.02 according to the results presented by Teillet et
al. �1997��. Moreover, the differences tend to be
similar among the different vegetation types analyzed
by Teillet et al. �1997�. Thus, the same vegetation
types are those with the highest �and lowest� NDVI
values both in TM and WiFS data. This is the only
assumption required to generate equivalent categori-
cal datasets for both sensors according to the NDVI-
threshold procedure.

Majority rules and Landsat-TM patterns

We applied majority rules to coarsen the spatial reso-
lution of the 36 categorical images derived from the
Landsat-TM scene. Majority rules assign to the de-
graded image the most frequent class in windows of
F × F pixels, where F is the aggregation factor or the
relation between the length of a pixel in the degraded
and original image. Categorical patterns were de-
graded to eight additional spatial resolutions corre-
sponding to the aggregation factors F�2, 3, 4, 5, 6,
10, 30 and 50 pixels. An example of the resultant
patterns for F�6 is shown in Figure 2.

Fragmentation indices

We examined six indices that are being used to char-
acterise forest fragmentation within the Third Span-
ish National Forest Inventory �Ministerio de Medio
Ambiente 2002�. We adopt a broad definition of frag-
mentation that includes the combined effects of habi-
tat loss and breaking of habitats �e.g., Andrén 1994;
Schumaker 1996; Jaeger 2000�. Number of patches,
mean patch size, edge length and largest patch index
have been widely used for landscape pattern analysis
�e.g., Iverson 1988; Turner and Ruscher 1988;
Forman 1995; Griffiths et al. 2000; Tischendorf
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2001�. Patch cohesion �Schumaker 1996� and land-
scape division �Jaeger 2000� have been more recently
introduced and present potential improvements over
existing indices. All the fragmentation indices were
computed at the class level �i.e., considering only
those patches belonging to a certain class� using
C�� programs. The six fragmentation indices are:

�1� Number of patches �NP�. A patch is defined
here by the 4-neigborhood rule. NP can be used as a
fragmentation index �e.g., Turner and Ruscher 1988�,
with higher NP indicating greater fragmentation.

�2� Mean patch size �MPS�. This is a simple and
common fragmentation index �e.g., Turner and Rus-
cher 1988�, with lower MPS indicating greater frag-
mentation:

MPS �
�
i�1

NP

ai

NP
�2�

where ai is the area of each of the NP patches of the
land cover class of interest.

�3� Edge length �EL�. An edge is defined as the
length of any side shared between two pixels belong-
ing to different classes. EL is regarded as a good in-
dicator of pattern fragmentation �Li et al. 1993�, with
more fragmented landscapes yielding higher EL.
Edges defined by the map border are not included in
EL.

�4� Largest patch index �LPI�. LPI is the percent of
total landscape area occupied by the largest size patch
of the class of interest �McGarigal and Marks 1995�.

�5� Landscape division �LD�. LD is defined as the
probability that two randomly chosen places in the
landscape are not situated in the same patch of the
class of interest �Jaeger 2000�. So, higher LD values
indicate increased fragmentation. It is computed as:

LD � 1 � �
i�1

NP � ai

AT
�2

�3�

where AT is total landscape area. Large patches con-
tribute to the decrease of the total probability in a
greater proportion than smaller ones, as indicated by
the squared terms in Equation �3�. In particular, if the
largest patch occupies a high percentage of total class
area, the contribution of the rest of the patches to
Equation �3� becomes minor. For this reason, LD may
be highly correlated with LPI. So are effective mesh
size and splitting index, which can be computed di-
rectly from LD �Jaeger 2000�.

�6� Patch cohesion �PC� index. PC is given by:

PC ��1 �
�
i�1

NP

pi

�
i�1

NP

pi · �ai
� · �1 �

1

�N�
�1

�4�

where pi and ai are, respectively, the perimeter and the
area of each of the NP patches of the class of interest,
and N is the total number of pixels in the landscape.
ai and pi are expressed respectively as the number of
pixels and pixel edges of a patch �Schumaker 1996�.

Figure 2. Comparison of actual TM and WiFS patterns and TM patterns aggregated to WiFS resolution through majority rules. The three
images correspond to the same subset within the study area. The spatial resolution of each image is indicated between brackets.
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This way, when all patches of habitat are confined to
single isolated pixels PC attains its minimum value
�PC�0�, while PC reaches the maximum �PC�1�
when a single habitat patch fills the whole landscape.
Higher PC values indicate lower fragmentation.
Schumaker �1996� found that PC was better linearly
correlated with animal populations dispersal success
than other commonly used landscape indices. Tis-
chendorf �2001� partially supported this result.

We can quantify the mean sensitivity to spatial
resolution of the indices in the whole data set �SM�
with the following expression �O’Neill et al. 1996;
Saura and Martínez-Millán 2001; Saura 2002�:

SM � 100 ·
�
i�1

n

�Ii
180 � Ii

30�
n · SD

�5�

where I30 and I180 are respectively the values of the
fragmentation index at spatial resolutions of 30
meters �Landsat-TM� and 180 meters �Landsat-TM
degraded to IRS-WiFS resolution through majority
rules, F�6�. In our analysis, n�72 �two NDVI-
classes, four zones, and nine different values of class
abundance�. SD is the standard deviation of the index
in the full set of Landsat-TM patterns, indicating the
different range of variation of each index.

Results

Comparison of aggregated and actual sensor
patterns

We found considerable differences between the indi-
ces values of the actual WiFS data and those of TM
data aggregated through majority rules �Table 1�.
Benson and MacKenzie �1995� concluded that extrap-
olated indices values using majority rules closely ap-
proximated the actual sensor values. However, this is
not the case for all fragmentation indices in our study.
NP, MPS and EL indicate that majority rules
produced clearly more fragmented patterns than ac-
tual sensor ones for the four zones �Table 1�. The rest
of the fragmentation indices did not show a system-
atic difference between the two types of data �Table
1�.

Sensitivity of indices to spatial resolution

There are great differences in the sensitivity of each
of the indices to spatial resolution. LD and LPI are
the most robust for both aggregated and actual sensor
patterns �Table 1, Table 2, Figure 3�. This is consis-
tent across all four zones �Table 1�. LPI tends to in-
crease with pixel size in most of the cases because
patches near the largest one may merge into it at
coarser resolutions. As a consequence, the largest
continuous area of a given habitat tends to be over-
estimated for bigger pixel sizes. An increase in patch
size results in lower LD values �Equation �3��. Since
both LPI and MPS tend to increase with pixel size,
LD decreases at coarser spatial resolutions in most of
the cases �Table 1�. LD and LPI show quite similar
variation trends as a function of class abundance and
spatial resolution �Figure 3�. Also, the highest sensi-
tivity of both indices to changes in spatial resolutions
occurs at class abundance of about 60% �Figure 3�.
This is a consequence of the high correlation between
LD and LPI, with a linear regression between LD and
LPI yielding R2�0.956.

NP, EL and MPS are by far the most sensitive in-
dices and thus are not suitable for directly comparing
fragmentation of landscape data with different spatial
resolutions �Table 1, Table 2, Figure 3�. NP and EL
decrease and MPS increases rapidly with increasing
pixel sizes in the four zones �Table 1, Figure 3�. Patch
cohesion is considerably sensitive to spatial resolu-
tion when class abundance is low �see Figure 3 for
class abundance about 10%�. But for high class abun-
dance PC is, in general, insensitive to changes in spa-
tial patterns �Gustafson 1998; Saura and Martínez-
Millán 2000� or to changes in pixel size �Figure 3,
Table 1�.

Undesirable behavior of patch cohesion index

NP, MPS, EL, LPI and LD all show lower fragmen-
tation at coarser spatial resolutions �Table 1, Figure
3�. This is expected since small patches are “lost” or
merge with bigger ones with increasing grain size.
However, PC increases for finer spatial resolutions in
all four zones �Figure 3, Table 1�, indicating higher
fragmentation at larger grain sizes. As illustrated in
Figure 4, PC increases even if the pattern does not
change when mapped at finer resolutions, when the
rest of the fragmentation indices remain constant. In
fact, an arbitrarily large value of PC, as close to 1 as
desired, can be obtained for a given landscape by
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Figure 3. Values of the six fragmentation indices as a function of class abundance for zone 3 and class 2 �high-NDVI�. Plots include indices
values corresponding to actual TM and WiFS patterns and to TM-patterns aggregated to several coarser resolutions through majority rules.
F2 is the number of original TM-pixels in the aggregating window. Note that the values of number of patches, mean patch size and edge
length are shown in logarithmic scale.
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simply resampling the pattern at finer spatial resolu-
tions �Saura 2001�. This behaviour is a consequence
of the dispersal model used by Schumaker �1996� to
develop the patch cohesion index, in which dispersal
success is defined as the probability that an animal
�disperser� is able to find new free territories �not
previously occupied by other individuals�. Schumaker
�1996� defines territories as hexagons of a given size
in which at least half of the pixels correspond to
habitat suitable for the studied animals �e.g., old
growth forests�. Territories are then defined on a
pixel-basis; the following arguments would not vary
if we simply define a territory as a single habitat
pixel, and we will consider it so hereafter. For the
same number of individuals settled at different points
in the landscape, a much larger proportion of total
habitat area will be considered as already occupied
when pixel size increases �because one individual al-
ways occupies the area of one pixel�. This makes dis-
persal success rates decrease, since they depend on
the availability of a sufficient number of distinct and
non-occupied territories �pixels�. Conversely, de-
creasing pixel size produces a larger number of dis-
tinct available territories and a subsequent increase in
dispersal success probabilities.

It is possible to correct this undesired behaviour of
PC by slightly modifying the expression that Schu-
maker �1996� provided to calculate PC �Equation �4��.
We now consider patch areas and perimeters as the
real magnitudes they represent on the ground and
adopt the following expression:

PC ��1 �
�
i�1

NP

pi

�
i�1

NP

pi ·� ai

amin

� · �1 �
1

� AT

amin
�

�1

�6�

where pi and ai are now expressed as the perimeter

and area corresponding on the ground to a certain
patch; thus they are no longer defined on a pixel ba-
sis. AT is total landscape area and amin is the area of
the smallest patch in a given spatial dataset. Note that
if spatial resolution does not vary and amin equals
pixel size then Equation �6� simplifies to Equation
�4�. This modified expression may allow computing
PC in vector data, in which there is a certain mini-
mum mapping unit that can be simply made equal to
amin. If all patches in the landscape data �either vec-
tor or raster� are as small as amin then PC�0. If a
single patch fills the landscape then PC�1. Thus the
patch cohesion computed according to Equation �6�
maintains the original range of variation and interpre-
tation provided by Schumaker �1996�. Another possi-
bility is considering amin larger than the smallest
patch �excluding patches smaller than amin in the
computation of PC, to avoid the possibility of nega-
tive values for this index�. This will somehow intro-
duce a limitation related to the minimal sizes required
for a patch to be considered as a territory suitable for
colonization. However, it remains to be tested if the
correlations between PC and dispersal success de-
tected by Schumaker �1996� still hold in this case.

The values of PC computed according to Equation
�6� are free of the spatial resolution inconsistency de-
scribed before. PC values now remain constant when
spatial resolution varies but the pattern remains
invariant �Figure 4�. All the patterns in Figure 4 have
the same value of amin. As a consequence of this cor-
rection, the index now does indicate lower fragmen-
tation at coarser resolutions �Figure 5�. This modified
version of PC is also considerably more robust to
changes in pixel size than the original one: mean sen-
sitivity decreases from 86.5 �Table 2� to 35.5.

Power laws and fragmentation indices

It may be possible to predict the scaling behavior of
the most sensitive indices �NP, MPS, EL� and render
them comparable across spatial resolutions. Power
laws have been used in fractal and earth sciences
studies to characterise size distributions of geograph-
ical entities and to estimate the scale variations of
spatial variables �Feder 1988; Korvin 1992�. Several
authors have noted that power laws allow predicting
the variations of different landscape indices as a
function of spatial resolution �Hlavka and Livingston
1997; Frohn 1998; Wu et al. 2000; Saura 2001; Wu
et al. 2002�:

Table 2. Mean sensitivity to spatial resolution �SM� of the six
analysed fragmentation indices.

Index SM

NP 209.2
MPS �ha� 2880.0
EL �km� 251.5
LPI �%� 12.1
LD 10.6
PC 86.5
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I�F	 � k · F�E �7�

or, equivalently,

log�I�F		 � k' � E · log �F	 �8�

where I(F) is the value of the index corresponding to
the aggregation factor F �F2 is the number of pixels
in the aggregating window�. k and k' are constants
�k'�log k� and E is the slope of the double-log linear
relationship between I and F or, equivalently, the ex-
ponent that characterises the power-law �E � 0 for

indices that decrease at coarser spatial resolutions like
NP or EL�. Both E and k' were computed as coeffi-
cients of the linear least-squares regression given by
Equation �8�. Equation �8� was fitted to each of the
NP and EL values calculated on the Landsat-TM pat-
terns �F�1� degraded through majority rules to sev-
eral spatial resolutions �from F�1 to F�50�. In the
case of a perfect fit k' will be equal to log�I(1)�, where
I(1) is the value of the index in the finest spatial reso-
lution data �F�1�. Estimated MPS values at coarser
spatial resolution were obtained through Equation �2�
from the values of NP obtained from fitted power
laws.

Regressions yielded values of E for the four zones
ranging from 1.71 to 2.56 �with mean 1.97� for NP
and from 0.85 to 1.19 �with mean 0.97� for EL. In
the case of NP, the highest E values were found for
class abundance of about 90% and the lowest ones for
class abundance of about 30%. In the case of EL,
highest E values were obtained both for class abun-
dance of about 90% and 10%, while the lowest ones
occurred for the class abundance of 50%. However,
class abundance only explained about half of the to-
tal variance of E for both indices �R2�0.5 when fit-
ting a second-degree polynomial�, and E values did
not correlate significantly better with any other of the
indices considered in this study. In all the cases we
obtained R2 bigger than 0.96 for NP �over 0.99 in 68
of those 72 cases� and bigger than 0.992 for EL when
fitting the power laws to aggregated data �Figure 6�.
However, logarithms used in Equation �8� tend to un-
derestimate largest residuals and thus may provide

Figure 4. Three patterns in which pixel size has been decreased while maintaining the original spatial configuration. The values of the patch
cohesion index �PC� calculated through Equation �4� are shown above each pattern.

Figure 5. Values of the modified version of the patch cohesion �PC�
index �calculated through Equation �6�� as a function of class
abundance for zone 3 and class 2 �high-NDVI�. PC values corre-
sponding to TM-patterns aggregated to several spatial resolutions
through majority rules are included. F2 is the number of original
TM-pixels in the aggregating window. F�1 corresponds to actual
non-aggregated TM patterns.
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inflated R2 values. A direct comparison of NP, MPS
and EL values computed on aggregated data and ob-
tained from the fitted power-laws �for F�6� for the
four zones is included in Table 3. We calculated the
power-law prediction error as the difference �in abso-
lute value� between the value of the index derived
from fitted power law and the one computed in actual
aggregated data. The resultant mean relative error for
all F values and zones is 9.8% for NP �s.d.� 14.8%�,
9.2% for MPS �s.d. � 9.7%�, and only 4.5% for EL
�s.d. � 4.2%�. About 10% of the 72 cases have rela-
tive errors higher than 20% for NP and MPS and
higher than 10% for EL. Power-laws may be applied
not only to NP, MPS and EL, but also to the other
less sensitive indices �Wu et al. 2002�. For example,
Wu et al. �2002� found that the variation of LPI with
spatial resolution followed a power function. But in

Figure 6. Double-logarithm plot of number of patches and edge
length versus spatial resolution �F� for Landsat-TM patterns aggre-
gated through majority rules. Data correspond to zone 2 and class
2 �high-NDVI�. Three different cases of class abundance �Ac� are
included. F2 is the number of original TM-pixels in the aggregat-
ing window. F�1 corresponds to actual non-aggregated TM
patterns.
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our case power-laws provided much poorer predic-
tions for LPI, LD or PC than for NP or EL. For ex-
ample, for LPI only 30% of the cases had R2 higher
than 0.9 and 28% of the cases had R2 lower than 0.6.

Discussion

NP, MPS and EL indicate that actual sensor patterns
are clearly less fragmented than those aggregated by
majority filters. In fact, this is consistent with the data
presented in Figure 3 of Benson and MacKenzie
�1995�: fewer NP and higher MPS in actual AVHRR
satellite images than in aggregated data with the same
spatial resolution �obtained by applying majority
rules to SPOT-HVR images�. However, LPI, LD and
PC do not show such systematic differences between
the two types of data sets. This may be due to the fact
that many more small patches, including single iso-
lated pixels, existed in the aggregated images than in
the actual WiFS images at the same resolution. NP,
MPS and EL are much more sensitive to the amount
of small patches in the landscape than LPI, LD and
PC �Saura 2002�.

Although sensor-specific characteristics could have
some impact on the NDVI-patterns �e.g., Teillet et al.
1997�, these do not appear sufficient to explain the
large differences reported here in terms of pattern
fragmentation. These differences may be due mainly
to an intrinsic limitation of majority rules for
scaling-up landscape configuration. Remote sensors
receive the radiation from a certain area of the ground
�the instantaneous field of view, IFOV�, which is
commonly regarded as a perfect squared piece of the
Earth’s surface. However, this is not true in practice
�Cracknell 1998; Huang et al. 2002�. First, there is a
non-uniform response within the IFOV; objects
located near the centre of the IFOV contribute more
strongly to the output signal than those farther from
it �i.e., sensors present non-linear point spread func-
tions�. This is not the case of majority rules, which
assign the same weight to all the pixels regardless of
their position within the aggregating window. Second,
the signal attributed by the sensor to any given pixel
is the result of contributions not only from the area
strictly corresponding in the ground to that pixel but
also from objects located in neighbouring pixels. This
means that the way remote sensors acquire the infor-
mation introduces an additional degree of spatial au-
tocorrelation between pixels �Breaker 1990; Crack-
nell 1998; Huang et al. 2002�. This is added to the

intrinsic spatial autocorrelation of landscape patterns.
This may explain why simple majority rules are not
able to fully replicate the spatial structure in actual
sensor patterns. To improve the results provided by
simple majority rules it may be necessary to consider
the sensor point spread function �PSF�. Knowledge of
this PSF would allow developing aggregation rules
that replicate more closely the spatial configuration of
actual sensor patterns. Alternatively, prior to image
classification, a deconvolution process could be
applied to the images to remove sensor-induced cor-
relation. Several authors have tackled these issues in
a remote sensing context �Justice et al. 1989; Breaker
1990; Forster and Best 1994; Cracknell 1998; Huang
et al. 2002�.

Among the six indices examined in this study, LD
and LPI are the most suitable for direct comparison
of landscape fragmentation using data with different
spatial resolutions �Table 1, Figure 3�. LD and LPI
have also been shown to be considerably robust to
variations in the minimum mapped units of landscape
data resulting from an image interpretation process
�Saura 2001; Saura 2002�. As noted in Saura �2002�,
LD conveys essentially the same information as the
area weighted mean patch size �Li and Archer 1997�.
The values of these indices are little affected by small
patches that are not detected at coarser spatial scales.
On the contrary, LD and LPI are not particularly ro-
bust to changes in spatial extent �Saura 2001�, and
other fragmentation indices are more adequate for
comparing the fragmentation of patterns with differ-
ent extents �Saura 2001; Saura and Martínez-Millán
2001; Wu et al. 2002�.

Our results show that power-laws were able to pre-
dict considerably well the variations of NP and EL
with changing pixel size, which is consistent with
previous studies �e.g., Frohn 1998; Wu et al. 2000;
Wu et al. 2002�. However, our results indicate that the
exponent of the power law has to be empirically de-
termined by fitting it to the index values computed on
aggregated data. In this case, little is gained by fitting
a power-law, since the index value at a certain reso-
lution can just be obtained by computing it on aggre-
gated data. However, the interest of such an exponent
is that it may also allow obtaining relatively good es-
timations of the fragmentation index at finer spatial
resolutions. This may be the only operational proce-
dure to scale-down fragmentation indices values �i.e.,
obtaining values of fragmentation indices at finer
resolutions based on power-laws developed on
coarser resolutions�. However, further studies are
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needed to know the range of spatial resolution within
which such extrapolation provides estimates with a
reasonable degree of accuracy. This is part of our on-
going research. It also should be noted that scaling
based on power laws fitted to majority-filtered data
has at least two sources of error: the statistical error
from fitting power-laws to aggregated data and the
spatial error due to the differences between aggre-
gated and actual sensor patterns.

Our study compared landscape patterns derived
from IRS-WiFS and Landsat-TM images for a central
Spain landscape. These results may be verified with
other types of landscape data and ranges of spatial
resolution different from those considered here. We
have focused on six fragmentation indices that are
used in the Third Spanish National Forest Inventory,
which are only a small set all available fragmentation-
related indices �e.g., Hargis et al. 1998, McGarigal
and Marks 1995�. Also, the indices were computed
only at the class-level. Nevertheless, these results
may be useful for understanding the behaviour of the
same indices at the landscape level.
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