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Abstract

Landscapes resulting from human activity may be expected to present simpler shapes than more natural landscapes.
In the case of forest landscapes, the boundaries of native forest patches may be more irregular than those of exotic
forest plantations. There is however a lack of quantitative results to this respect, and it is not clear which shape
indices are more adequate for such discrimination. In this study, we analysed the shape of a large number of forest
classes in the region of Galicia (Spain) using the Spanish Forest Map at a scale 1:50 000 as the spatial information
source. We considered a set of fifteen shape irregularity indices including those that have been commonly used
in landscape ecology studies. We found systematic differences in the shape of the analysed forest classes, with
native forests presenting both more complex and elongated boundaries than exotic forests. We suggest that these
differences are due to the combined effects of human action and other topographical and hydrological factors. The
only index that perfectly discriminated both types of forest was the mean circumscribing circle index. Other six in-
dices provided also a significantly good discrimination: density of shape characteristic points, area-weighted mean
perimeter-area ratio, area-weighted mean contiguity index, mean shape index, perimeter-area fractal dimension
and mean largest axis index. Comparisons of pure and mixed forests with the same dominant species indicated that
an increase in tree species richness is in general associated with more irregular boundaries in the forest. Discarding
indices on the basis of a high statistical correlation may not be an adequate procedure to retain the best-performing
indices. Finally, we discussed several limitations of some frequently used indices that may be relevant to prevent
an improper characterization of landscape shape.

Introduction

The landscape is a mosaic of patches with vary-
ing sizes and shapes that results from the interaction
of natural and human factors (e.g., Hulshoff 1995;
Mladenoff et al. 1993; Forman 1995). The shape of
the patches is one of the most relevant properties of
landscape patterns. Shape characteristics may be used
as an indicator of the origin or degree of human altera-
tion of the patches (e.g., Forman 1995; Lindenman and
Baker 2001; Moser et al. 2002); landscapes resulting
from human activity are generally assumed to present
simpler shapes than natural landscapes. In the case of

forest landscapes, the boundaries of native forests may
be more irregular and complex than those of exotic
forest plantations. However, this hypothesis has been
subjected to very limited quantitative testing.

On the other hand, the growing development of
quantitative methods in landscape ecology has made
available a large number of indices for characterising
landscape shape (e.g., Forman 1995; Haines-Young
and Chopping 1996; McGarigal et al. 2002; Moser
et al. 2002), but the characteristics and behaviour of
available indices are not sufficiently known. Further
studies are needed to identify the limitations and scope
of application of the different shape metrics, in or-
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der to prevent an improper selection and use of these
indices in landscape ecology studies.

Several studies have analysed through quantitat-
ive indices the shape of certain forest types, in some
cases comparing areas with different degrees of hu-
man activity. Different results have been obtained in
these studies. Krummel et al. (1987) analysed a de-
ciduous forest class in the Natchez Quadrangle (USA)
and noted that the shape of the patches varied con-
siderably between agricultural areas (in which human
activities imposed regular boundaries to the remanent
forest) and other more natural areas where the same
class exhibited more complex shapes. Iverson (1988)
found that deciduous forests presented more irregu-
lar boundaries than evergreen (plantation) forests in
Illinois (USA). Mladenoff et al. (1993) found that an
intact primary old-growth forest landscape in northern
Wisconsin (USA) was significantly more complex in
shape than a human-disturbed forest landscape in the
same area. Hulshoff (1995) concluded that there was
no difference between the shape of natural and hu-
man modified patches in the Netherlands, because the
shape of natural patches was mostly fixed by human-
modified neighbour patches. Forman (1995) stated,
according to a study developed in Poland by Pietrzak
(1989), that the most irregular shapes do not appear
in the most natural areas but in areas with an interme-
diate intensity of human activity. Crow et al. (1999)
concluded that the shape complexity of forests in Wis-
consin (USA) was influenced both by the physical
environment and by land ownership (private and pub-
lic lands). These previous studies have not considered
detailed forest classifications, and have usually ana-
lysed only a single or few forest classes. Also, in most
of these studies only one or two indices have been
used to characterise forests shape. Indices selection
has been a bit arbitrary and quite different among these
studies.

We here analyse the shape of native and exotic
forests at a scale 1:50 000 in the region of Galicia
(Spain), which is characterised by a high diversity of
forest tree species. We consider a much larger number
of classes and set of indices than in previous studies
on forest shape. This is, to our knowledge, the first
study that specifically compares the shapes of several
native and exotic forest classes through a wide set of
quantitative indices. We wish to provide insights in the
following questions. Are there systematic differences
in the shape of native and exotic forests? Which shape
indices are the most adequate for discriminating these
two types of forests? Do mixed forests present more

irregular boundaries than pure forests? Do some of the
usual indices present limitations that make them inad-
equate for characterising landscape shape? We expect
that our findings on these questions may be valuable
for other quantitative studies on forest and landscape
shape.

Methods

Study area and spatial data

Galicia is a region located in the Northwest of Spain
(Figure 1) that comprises the provinces of A Coruña,
Lugo, Ourense and Pontevedra (in total, 2 957 500 ha)
and presents a long coastline with the Atlantic Ocean
(Figure 1). Galicia presents a humid Atlantic climate
with mild temperatures: mean annual temperature is
13 ◦C and mean annual precipitation is 1400 mm, rais-
ing above 2000 mm in the mountainous areas, and
with the interior areas of Lugo and Ourense presenting
a more continental character (with summer drought
and more frost days) than the provinces of A Cor-
uña and Pontevendra. Galicia presents acid soils and
a complex topography, with altitudes ranging from
sea level up to 2124 m (mean altitude 508 m) and
more than 50% of the land with slopes above 20%.
Mean population density is about 95 inhabitants per
km2 (above the Spanish mean), with population con-
centrated in the coastal areas. According to the Third
Spanish National Forest Inventory, the percentage land
use distribution in Galicia is about 48% forests, 21%
shrubs and natural pastures, 28% agricultural lands,
1% water bodies and wetlands, and 2% urban and
other human-made areas. The forest landscape of
Galicia has been deeply modified by human action,
especially during the last five centuries (Manuel and
Gil 2002). The most abundant forest tree species are
Pinus pinaster, Quercus robur, Eucalyptus globulus,
Quercus pyrenaica, Pinus sylvestris, Pinus radiata
and Castanea sativa, with considerable differences
among provinces (Table 1). The native and climacic
tree forest species in Galicia are broad-leaved species,
with the exception of Taxus baccata (Rivas-Martínez
1987; Rois 2001), which very rarely is the main spe-
cies in a forest. Pollen records suggest that some
thousand years ago existed in Galicia natural forests
of Pinus sylvestris and Pinus pinaster, but apparently
they did not last until present and currently the forests
of these two species in Galicia origin from planta-
tions developed mostly in the last century (Rois 2001;
Manuel and Gil 2002).
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Figure 1. Location of the four provinces of Galicia in the map of Spain.

Galicia was selected for this study because this
region presents a high diversity of both native and non-
native forest tree species. The Spanish Forest Map at
a scale of 1:50 000 and recently updated for Galicia
within the Third Spanish National Forest Inventory
(Ministerio de Medio Ambiente 2002) was available
when this study was started and was used as the spa-
tial information source. The Spanish Forest Map was
developed from the interpretation of high-resolution
satellite images combined with aerial photographs,
pre-existing maps and field inventory data. The min-
imum mapping unit is in general 6.25 ha, lowering
to 2.2 ha in the case of forest patches embedded in a
non-forest land use matrix. The Spanish Forest Map
provides information on the tree species present in
each forest patch, their abundance and the total forest
canopy cover. This detailed information was gener-
alised so that forest patches with equivalent species
composition (pure or mixed forests as described be-
low) were assigned to the same forest class and the
patches boundaries were dissolved according to this
classification. This way we identified for each of the
four provinces all the forest classes that were suffi-
ciently abundant (Tables 1 and 3): forest classes that
comprised less than 20 patches in a province were
not considered for analysis. This resulted in a total
of 23 pure forest classes (13 native and 10 exotic,
Table 1) corresponding to five native forest species
(Alnus glutinosa, Betula sp., Castanea sativa, Quercus
pyrenaica, Quercus robur) and four non-native tree

species (Eucalyptus globulus, Pinus pinaster, Pinus
sylvestris, Pinus radiata) present in one or more
provinces (Table 1). Several mixed forests were also
identified, and in 17 cases (7 species, each present in
one or more provinces) the dominant species appeared
in two different types of mixed forests, one with native
accompanying species and another with exotic accom-
panying species (at least 20 patches in both cases) as
shown in Table 3.

Our definition of forest includes all areas with
forest trees canopy cover ranging from 5% to 100%,
in coherence with the definition used in the Spanish
Forest Map. Pure (monospecific) forests are defined
as those in which at least 90% of the trees corres-
pond to the same (dominant) tree species. Conversely,
we define mixed forests as those in which the domin-
ant (most frequent) tree species is mixed with other
accompanying species (one or more) that together
comprise more than 10% of total trees (Madrigal
1994).

Shape indices

No single measurement or index of shape can un-
ambiguously differentiate all shapes (Austin 1984;
Forman 1995). We consider here a set of 15 in-
dices including those that have been commonly used
in landscape ecology studies (Iverson 1988; LaGro
1991; Baker and Cai 1992; Mladenoff et al. 1993;
Forman 1995; Hulshoff 1995; Riitters et al. 1995;
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Haines-Young and Chopping 1996; Garrabou et al.
1998; Sachs et al. 1998; Crow et al. 1999; Linden-
man and Baker 2001; Saura and Martínez-Millán
2001; Tischendorf 2001; Cumming and Vernier 2002;
McGarigal et al. 2002; Moser et al. 2002; Saura
2002). All the indices were computed at the class level
(i.e., considering all the patches belonging to a certain
forest class). Most indices were computed in the ori-
ginal vector format of the Spanish Forest Map with the
exception of four indices (MCIR, AWMCIR, MCON,
AWMCON) that were computed on raster format via
Fragstats (McGarigal et al. 2002). For the computation
of these four indices the forest classes were conver-
ted to raster format with a pixel size of 20 meters,
adopting the 8-neighbourbood criteria for the defini-
tion of the patches. Throughout the paper we will use
the term ‘irregular’ to refer to shapes that are complex
(convoluted) and/or elongated, considering as regular
those shapes that are both compact (isodiametric) and
with simple boundaries (e.g., circles and squares). The
analysed indices are:
(i) Mean shape index (MSI), area-weighted mean
shape index (AWMSI) and landscape shape index
(LSI). All these three indices derive from the follow-
ing ratio, that we will simply call ‘shape index’ (SI)
for consistency with previous literature (e.g., Garrabou
et al. 1998; Sachs et al. 1998; Tischendorf 2001;
Lindenman and Baker 2001; Saura and Martínez-
Millán 2001; Cumming and Vernier 2002; McGarigal
et al. 2002; Saura 2002):

SI = p

2
√

π
√

a
(1)

where p and a are, respectively, the perimeter and area
of the patch. SI attains its minimum (SI=1) for circles
(the most compact shapes in vector data) and increases
(with no theoretical upper limit) for more complex or
elongated shapes. MSI and AWMSI are obtained, re-
spectively, as the mean and area-weighted mean of the
SI values for each of the patches in the class of interest.

LSI has been used by several authors (e.g., Sachs
et al. 1998; Crow et al. 1999; Bogaert et al. 2002),
which we computed in vector data as

LSI =

n∑
i=1

pi

2
√

π

√
n∑

i=1
ai

(2)

where ai and pi are respectively the area and perimeter
of each of the n patches of the class of interest. LSI

applies the shape index concept but treating all class
area and perimeter in the landscape as one single large
patch (e.g., Sachs et al. 1998). For a single circular
patch LSI=1. However, if the class of interest com-
prises of multiple circular patches of different sizes,
LSI will not be equal to 1.
(ii) Mean perimeter-area ratio (MPAR) and area-
weighted perimeter-area ratio (AWMPAR). These are
simple indices computed as mean and area-weighted
means of the ratio between patch perimeter (m) and
area (ha) that have been used by several authors (Baker
and Cai 1992; Hulshoff 1995; Iverson 1998; Garrabou
et al. 1998; McGarigal et al. 2002). Note that in prac-
tice AWMPAR simplifies to the ratio between the total
perimeter and area of the class of interest, as follows:

AWMPAR =

n∑
i=1

Pi

ai
× ai

n∑
i=1

ai

=

n∑
i=1

pi

n∑
i=1

ai

(3)

(iii) Perimeter-area fractal dimension (PAFD). Fractal
dimension is a descriptor of the geometrical proper-
ties of those objects that have an invariant scaling
behaviour under certain transformations (Mandelbrot
1983). It can be demonstrated that the areas and peri-
meters of a set of objects with similar shapes obey the
following expression (Feder 1988):

p = k × a
PAFD

2 (4)

where k is a constant and PAFD is the perimeter-area
fractal dimension of the set of similar shapes. Taking
logarithms in both sides of Equation 4, PAFD was es-
timated as 2 divided by the slope of the fitted line of
log areas (dependent variable) versus log perimeters of
each of the patches of the class under analysis. PAFD
has been widely used as a measure of shapes com-
plexity (Iverson 1988; Baker and Cai 1992; Mladenoff
et al. 1993; Frohn et al. 1996; Luque 2000; Peralta
and Mather 2000; Imbernon and Branthomme 2001;
Saura and Martínez-Millán 2001; Tischendorf 2001;
Cumming and Vernier 2002; Saura 2002), with higher
PAFD values indicating more complex patterns, and
theoretically ranging from 1 to 2.
(iv) Mean fractal dimension index (MFD) and area-
weighted fractal dimension index (AWMFD) (Sachs
et al. 1998; Tischendorf 2001; Cumming and Vernier
2002; McGarigal et al. 2002). These two indices are
obtained respectively as the mean and area-weighted
mean of the fractal dimension index (FD) for each
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patch, obtained as:

FD =
2 ln

(
p

2
√

π

)
ln a

(5)

FD, MFD and AWMFD attain its minimum value
(FD=1) for perfectly circular shapes and increase for
more complex or elongated shapes up to a maximum
value of 2.

(v) Density of shape characteristic points (DSCP).
Moser et al. (2002) recently proposed a new measure
of shape complexity: the number of shape character-
istic points (NSCP). NSCP is the minimum number of
points necessary to describe a patch boundary. More
complex shapes present a larger NSCP. NSCP is com-
puted in vector data as the number of vertices of a
given polygon (patch). However, to eliminate minor
shape irregularities, only vertices in which the angle
is smaller than α are counted as shape characteristic
points, with α = 160◦ (Moser et al. 2002). The-
oretically, NSCP is not affected by patch elongation
but only by patch boundary complexity (Moser et al.
2002). NSCP was applied by Moser et al. (2002) at the
landscape level. Here we adapt it to the class level by
considering the density of shape characteristic points
(DSCP), which results from dividing the total num-
ber of shape characteristic points for the class by total
class area (ha). We also tested the performance of the
index in the context of our study for other α values
different from 160◦ (180◦, 170◦, 160◦, 150◦, 100◦,
50◦, 30◦). All the DSCP values shown in Tables 1, 2
and 3 correspond to α = 170◦.

Bogaert et al. (1999) proposed a new index of peri-
meter irregularity (�), which is based on the twist
number. This index is conceptually similar to NSCP
but was developed only for raster data, and cannot be
computed in vector data. Perimeter twists divide the
perimeter in a discrete number of straight segments;
large twist numbers imply small segment lengths and
rough perimeters (Bogaert et al. 1999). However, this
index was not considered appropriate for the purposes
of our study, and therefore was not included in the
analysis. To allow the computation of �, the vector
polygons of the Spanish Forest Map have to be con-
verted to raster format, as done for some other indices.
However, the number of twists in the resultant raster
data does not adequately reflect the real complexity of
the patches boundaries. Rather, the aliasing (staircase)
effect that occurs when converting vector shapes to
raster format (e.g., Foley et al. 1995) has a prominent
effect on the resultant number of twists. The number
of twists in a raster representation of a line depends

Figure 2. A simple vector square shape (black line) was rasterized
with the same cell size but with different orientations with respect
to the grid axis. Very different vaules of the number of twists were
obtained in the resultant raster data (4, 20, 36 and 54).

dramatically on the relative orientation of the line and
the axis of the resultant grid, and not really on the true
irregularity of the shapes being represented in raster
format, as illustrated in Figure 2. This limitation of
� is likely to be also present when the spatial data
are directly gathered in raster format (e.g., classified
satellite images).

(vi) Mean circumscribing circle index (MCIR) and
area-weighted mean circumscribing circle index (AW-
MCIR), obtained as mean and area-weighted means
of the index (CIR) values for each patch in the class of
interest (McGarigal et al. 2002):

CIR = 1 − a

c
(6)

where a is the area of the patch and c is the area of
the smallest circle circumscribing around that patch.
These are basically elongation indices that attain a
minimum value (CIR=0) for circular patches and in-
crease for more elongated and narrow patches (up to a
limit of CIR=1).

(vii) Mean largest axis index (MLA) and area-
weighted mean largest axis index (AWMLA). The
largest axis (l) is the straight line connecting the two
furthest-apart points in the patch (note that the largest
axis is not necessarily equal to the diameter of the
circumscribing circle), and is the basis for several
measures related to shape elongation (Davis 1986,
Forman 1995). MLA and AWMLA are obtained as



653

Table 2. Number of runs, ranges of variation and percent overlap for each index in the discrimination
of pure native and exotic forest classes.

Index Number of runs Values range for Values range for Percentage overlap

exotic pure forests native pure forests

MSI 6 (∗) 1.75–2.35 2.18–4.78 5.3

AWMSI 12 2.07–6.24 2.67–6.25 85.4

LSI 16 6.47–64.43 13.38–66.54 85.0

MPAR 12 172.9–12627.4 155.0–633.2 3.7

AWMPAR 4 (∗) 58.39–144.9 103.3–304.3 16.9

PAFD 6 (∗) 1.032–1.414 1.258–1.954 17.0

MFD 8 1.080–1.169 1.106–1.231 41.7

AWMFD 10 1.097–1.195 1.134–1.262 37.0

DSCP 4 (∗) 0.434–1.167 1.016–3.108 5.7

MCIR 2 (∗) 0.597–0.666 0.674–0.872 0.0

AWMCIR 12 0.627–0.733 0.691–0.944 13.2

MLA 6 (∗) 1.409–3.194 2.122–5.492 26.3

AWMLA 8 1.947–2.860 2.115–6.914 15.0

MCON 11 0.473–0.883 0.685–0.875 46.3

AWMCON 4 (∗) 0.900–0.960 0.787–0.928 16.2

∗Indices that performed significantly better than random at a 0.01 significance level.

means and area-weighted means of the LA values for
each of the patches of the class of interest:

LA = l√
a

(7)

(viii) Mean contiguity index (MCON) and area-
weighted mean contiguity index (AWMCON). These
two indices are obtained respectively as the mean and
area-weighted mean of the contiguity index (CON).
CON assesses the spatial connectedness, or contiguity,
of cells within a patch to provide an index of patch
boundary configuration and patch shape. It can only
be computed in raster data, equals 0 for a one-pixel
patch and increases to a limit of 1 as patch contigu-
ity, or connectedness, increases. See LaGro (1991)
and McGarigal et al. (2002) for further details on the
computation of this index.

Quantification of indices ability to discriminate
native and exotic forests

Ideally, an index would be able to perfectly discrimin-
ate all the native and exotic forest classes considered
in this study. In this case, the range of variation of
the index for the different native forests would not
present any overlap with the range of variation of the
same index corresponding to exotic forests. Also, if
the index values for all forest classes were ranked
(as in Figure 3) from lowest to highest and labelled

E (for exotic species) and N (for native species), the
sequence of labels will produce only two runs (uninter-
rupted sequences of equal labels). On the contrary, as
the index discrimination deviates from that ideal case,
the number of runs increases and the index values for
exotic and native forests overlap in a larger proportion
of the total range of variation for that index (Figure 3).
We used both number of runs and percentage overlap
as measures of index ability to discriminate pure nat-
ive and exotic forest classes, with percentage overlap
(OV) computed as (Table 2):

OV = 100×
min[max(nt), max(ex)] − max[min(nt), min(ex)]

max(all) − min(all)

(8)

where max(nt) and max(ex) are the maximum value
of the index for respectively pure native and pure
exotic forest classes, and max(all) is the absolute max-
imum value of the index for all the pure forest classes
considered. The same interpretation applies to the
minimum values (min). While both number of runs
and percentage overlap can be used to quantify the
discrimination provided by the indices, the number
of runs is a more robust estimator, since it is based
on the ranks of the values rather than on the values
themselves. Furthermore, the number of runs allowed
us to statistically test the discrimination provided by
the indices between pure native (13 classes) and exotic
forests (10 classes). An index performs significantly
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Figure 3. Number of runs and percentage overlap (indicated by the arrowed lines) in the discrimination of pure native and exotic forest classes.
The two examples in the figure correspond to a poor performing index (LSI, sequence in the top, 16 runs and 85% overlap) and to an index that
performed significantly better than random (DSCP, sequence in the bottom, 4 runs and 6% overlap).

better than random (at a 0.01 significance level) if in
our data the number of runs is equal or smaller than 6
(Swed and Eisenhart 1943; Davis 1989).

Results

Discrimination of pure forests of native and exotic
species

Considerable differences were found between the val-
ues of the shape indices for native and exotic pure
forests in Galicia (Table 1). Seven indices related
to shape elongation and/or complexity provided a
significant discrimination between both forest types:
these are, ranked by decreasing performance, MCIR,
DSCP, AWMCON, AWMPAR, MSI, PAFD and MLA
(Table 2). Native forests presented both more complex
and elongated boundaries than exotic forests (Table 1,
Figure 4). The only index that distinguished perfectly
both types of forests was the mean circumscribing
circle index (MCIR), with a threshold value of 0.67;
all native forest classes attained values of MCIR above
that threshold, while the opposite occurred with exotic
forests (Tables 1 and 2). In the case of DSCP, the
maximum vertex angle (α) that provided the best dis-
crimination was α = 170◦, with four runs and a 5.7%
overlap (Table 2), although the α = 160◦ proposed
by Moser et al. (2002) performed quite similarly (four
runs as well, but an overlap of 7.5%). The rest of the
indices (AWMSI, LSI, MPAR, MFD, AWMFD, AW-
MCIR, AWMLA, MCON) had a poor performance
(non significantly better than random) for discrimin-
ating the shape characteristics of both type of forests
(Table 2). The highest values of most indices (MSI,
AWMSI, AWMPAR, PAFD, MFD, AWMFD, DSCP,
MCIR, AWMCIR, LA, MLA) were obtained for Alnus
glutinosa forests in A Coruña (Table 1), which are ri-
parian forests that are shaped in very long and narrow
strips next to river margins (Figure 4). The effect of

elongation pulled upwards the indices values indices
in this case.

The shape of pure and mixed forests

In Galicia mixed forests tend to present more irreg-
ular, complex, and elongated boundaries than pure
forests (when the dominant species is the same in both
pure and mixed forests). This becomes apparent by
comparing the indices values of the pure forests of
a given tree species (Table 1) with those occurring
when that species is the dominant one in a mixed forest
(Table 3). For simplicity, now we focus in the six dis-
tinct indices that provided a significant discrimination
of pure native and exotic forests (Table 2), with AW-
MCON being excluded because of its extremely high
correlation with AWMPAR (r = −0.9998, Table 4).
For clarity, we organise our results in the following
four hypotheses to be tested, in which by ‘species’ we
mean the dominant (most abundant) tree species in the
forest:

(a) When a native species is mixed in a forest with
other native trees (forest A) the shapes are more ir-
regular than in a pure forest of that species (forest B).
According to MSI, this hypothesis held in all the cases.
MSI was systematically higher for A than for B (com-
pare the nine native classes in Table 3 with Table 1).
The rest of indices did not perform so well for dis-
criminating these two forest types; in particular DSCP
and AWMPAR only assigned higher irregularity to A
in five of the nine cases (Tables 1 and 3).

(b) When a native species is mixed in a forest with
exotic trees (forest A) the shapes are more irregular
than in a pure forest of that species (forest B). In this
case there are two factors (mix of species but presence
of exotic species) that may have opposite effects on
shapes irregularity. Results were contradictory among
the indices, and none of them assigned a higher value
to A or B in all the nine cases (Tables 1 and 3). MSI
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Table 3. Values of the indices for mixed forests of different species. We include only those cases in which the dominant tree species
in a province is present in two different types of mixed forests: mixed with only native trees and mixed with only exotic species. We
include only the six distinct indices that provided the best discrimination of pure native and exotic forests. The native species are Q.
robur, Betula sp., C. sativa, and Q. pyrenaica, the rest being non-native.

MSI AWMPAR PAFD DSCP MCIR MLA

Accompanying species

Province Dominant tree Native Exotic Native Exotic Native Exotic Native Exotic Native Exotic Native Exotic

species

A Coruña Q. robur 2.74 2.25 161.87 105.03 1.30 1.23 1.7711 1.1877 0.6935 0.6698 3.0109 2.2625

E. globulus 2.06 2.26 100.01 78.49 1.41 1.36 1.0851 0.7852 0.6458 0.6419 2.0241 1.4208

P. pinaster 1.89 2.20 100.54 77.29 1.38 1.43 1.1340 0.8130 0.6487 0.6418 2.0517 1.9895

Lugo Betula sp. 2.76 2.56 132.76 131.37 1.54 1.73 1.4175 1.3616 0.6971 0.6865 2.3615 1.4723

C. sativa 3.03 2.67 118.95 114.42 1.60 1.18 1.2089 1.2080 0.7119 0.7247 2.5397 2.4810

Q. pyrenaica 3.35 3.22 112.28 152.33 1.61 1.90 1.1774 1.8046 0.7069 0.7229 2.3707 2.4418

Q. robur 3.26 2.79 126.93 108.67 1.65 1.49 1.3991 1.1817 0.7078 0.6836 2.4305 2.1876

E. globulus 2.34 2.34 93.58 59.87 1.15 1.47 0.9946 0.5632 0.7230 0.6475 2.4319 2.0169

P. pinaster 2.57 2.21 89.99 77.34 1.48 1.41 0.9252 0.7606 0.6706 0.6459 2.1253 2.0325

P. radiata 2.85 2.21 113.19 99.12 1.65 1.46 1.1468 0.9255 0.6650 0.6501 2.1032 2.0837

Ourense C. sativa 2.83 2.57 107.39 96.35 1.65 1.01 1.1662 1.0112 0.7136 0.7035 2.3234 2.6961

Q. pyrenaica 2.90 2.52 96.65 92.52 1.61 1.55 1.0434 1.0261 0.7185 0.6851 2.3727 2.1484

Q. robur 2.90 2.54 100.08 117.73 1.44 1.29 1.0391 1.3499 0.6973 0.6742 2.4062 2.1438

P. pinaster 2.62 1.95 87.42 87.19 1.40 1.30 0.9562 0.7901 0.6631 0.6452 1.4744 2.0553

Pontevedra Q. robur 3.34 2.91 156.65 136.99 1.44 1.29 1.6537 1.5588 0.7095 0.6811 2.7623 2.0295

E. globulus 2.62 2.33 117.19 98.82 1.55 1.29 1.3063 1.1330 0.6994 0.6601 2.3102 2.0776

P. pinaster 2.80 2.47 121.31 92.89 1.33 1.39 1.3029 1.0460 0.6810 0.6574 2.4289 2.1533

assigned higher irregularity to A in six of nine cases,
while DSCP or AWMPAR assigned higher irregularity
to B in six of the nine cases (compare Tables 1 and 3).

(c) When a exotic species is mixed in a forest with
either exotic or native trees (forest A) the shapes are
more irregular than in a pure forest of that species
(forest B). In nearly all the cases the indices assigned
higher irregularity to A. DSCP and MCIR assigned
a higher value to A in 15 of the 16 cases (compare
results in Tables 3 and 1), while MSI, AWMPAR and
MLA did the same for 14 cases, and only PAFD per-
formed considerably worse (only in 10 cases higher
for A). These results did not differ much depending
on the native or exotic character of the accompanying
species in the mixed forest (Tables 1 and 3).

(d) When a species in the forest (either exotic or
native) is mixed with native trees (forest A), the shapes
are more irregular than when the same species is
mixed with exotic trees (forest B). In most of the cases
this was true, according to all the six indices con-
sidered (Table 3). In 15 of the 17 cases in Table 3, MSI,

AWMPAR, DSCP and MCIR assigned a higher irreg-
ularity when the main species was mixed with native
forests. PAFD performed considerably worse for this
discrimination, yielding higher complexity only for
12 of these 17 cases (Table 3). The native or exotic
character of the dominant species did not significantly
affect this conclusion (Table 3).

Obviously, if we compared mixed and pure forests
of different species (e.g., a mixed forest with only
exotic species with a native pure forest), the discrimin-
ation was poor according to all the indices; the native
or exotic character of the species has a more prominent
effect on shapes irregularity than whether the forest is
or not monospecific.

Shape indices correlation and forests discrimination

Most of the indices were significantly correlated
(Table 4), indicating that in our data the compon-
ents of shape characterised by the different indices
were interrelated. The highest correlation (in absolute
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Figure 4. Six areas that illustrate the spatial configuration of different pure forests in Galicia. All the areas have the same extent and were
extracted from the Spanish Forest Map (1:50 000 scale).

value) is by far the one found between AWMPAR
and AWMCON (r = −0.9998); both indices seem
to convey very much the same information, and they
performed equally for discriminating native and exotic
forests (four runs, and very similar overlaps of 16.2%
and 16.9%, Table 2). Other high correlations were
found between DSCP, AMWPAR and AWMCON,
between MSI and AWMCIR, between AWMSI and
AWMFD, and between MSI and AWMFD, among
others (Table 4).

However, indices that were highly correlated per-
formed very differently when discriminating the shape
of native and exotic forests. For example this is the
case of MSI and AWMFD: they present a correlation

as high as r = 0.912, but when discriminating native
and exotic forests MSI yielded six runs and a per-
centage overlap of 5.3% (significant discrimination,
Table 2), while AWMFD performed much poorly,
with 10 runs and a percentage overlap of 37.0% (non-
significant discrimination, Table 2). The same applies
for example to DSCP and AWMCIR (with 4 and 12
runs, respectively, and r = 0.808) and several others
(Tables 4 and 2). This shows that it may be risky to
rely in statistical correlations for indices selection in a
study of this kind.

The two indices that presented the lowest correl-
ations with the rest were LSI and MPAR (Table 4).
These indices seem to quantify a quite different aspect
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of landscape patterns than the rest of the metrics. Fi-
nally, it has to be noted that MCON and AWMCON
presented negative correlations with the rest of the in-
dices (Table 4); these two indices tend to have lower
values for more irregular shapes, while the rest behave
in the opposite way.

Discussion

The shape of native and exotic forests

The differences in shape found between native and
exotic forests can be clearly related to the degree of
human influence in the landscape. The most obvious
human influence is the development of exotic forest
plantations with simple and regular boundaries. These
human-made boundaries are still apparent at the re-
latively coarse scale of this study (1:50 000), even
though at this scale most of the limits between dif-
ferent ownerships and individual plantations are not
detected (Figure 4). However, Hulshoff (1995) stated
that in a human modified landscape (like Galicia)
‘no difference will be observed between the shape
of semi-natural and human modified patches’ because
‘the shape of natural patches is mostly fixed by their
human modified neighbour patches’. However, we
here did find significant differences in shape. One of
the reasons for this discrepancy may be the different
thematic detail of both studies. Hulshoff (1995) con-
sidered a five-class classification with a single forest
class (and less than 80 patches for all the five classes),
in contrast with the more than twenty forest classes
analysed in this study. When a single forest class is
considered, all forest patches will necessarily fall next
to other dominant and possibly less natural cover types
(e.g., agricultural lands), and then their borders will
be determined by adjacent land uses that may impose
simpler shapes to the forest. However, if a relatively
large number of forest classes is considered, a native
forest may be adjacent to other more or less natural
forest types, and then the interface between these
classes may be determined by physical and biological
factors that produce more complex shapes. This sug-
gests that some thematic detail may be required in
order to make more evident the differences in shape
between different cover classes.

Also, production forest plantations are typically
located in areas that are closer to human settlements
and agricultural areas and that present milder slopes
than the areas occupied by natural forests. Conversely,

native forests are usually more abundant in the less
altered areas with a complex topography, in which
higher altitudes and abrupt slopes may limit human in-
fluence. In these latter areas the shape of the forests is
controlled by a combination of topographical (altitude,
slope orientation) and hydrological factors (soil mois-
ture, drainage patterns) that result in more complex,
convoluted and elongated patches (Krummel et al.
1987; Forman 1995; Dorner et al. 2002), as those
found in this study (Figure 4).

The shape of pure and mixed forests and the effect of
tree species richness

The effect of native tree species on forest shape is
evident even when they are present as accompany-
ing species in a mixed forest. In general, enriching a
pure forest with other accompanying species is asso-
ciated with an increase in the complexity and elonga-
tion of the shapes. This is a logical result, since the
most intensively human-modified production forests
are planted and managed as monospecific forests. A
presence of other accompanying species in an exotic
forest may indicate that these species may be naturally
colonising an originally plantation forest that has not
been intensively managed for timber production for a
certain long period. This is then an indicator of natur-
alization of the forest that is also associated to a greater
degree of shapes irregularity.

Moser et al. (2002) found that shape complex-
ity (as quantified by NSCP) was a good predictor
of bryophytes and vascular plants species richness in
agricultural landscapes in Austria. Forest-dominated
landscapes were excluded from this study, and Moser
et al. (2002) noted that the predictive value of NSCP
might have to be tested in non-agricultural landscapes.
Our results for a forest landscape suggest that an in-
crease in the number of tree species in the forest
tends to be associated with more irregular shapes, but
also that in Galicia a monospecific native forest will
probably have more complex boundaries than a mixed
forest with several exotic species. This suggests that
forest tree species richness may not be successfully
related to shape irregularity if the native or exotic char-
acter of the species is not explicitly considered. In any
case, DSCP (the equivalent to NSCP at the class level)
was found to be adequate for discriminating the forest
types considered in this study (Table 2), although some
other indices performed similarly (Tables 2 and 3).
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Figure 5. Two patterns with different degrees of fragmentation and
shapes complexity (patches corresponding to the class of interest
shown in black) The landscape index (LSI) is 8.0 for the simple and
regular pattern in the left (50 square patches) and 5.2 for the more
complex and convoluted shapes in the right (2 patches).

On the use, interpretation and limitations of some
indices

LSI was the worst index for distinguishing native and
plantation forests (Table 2, Figure 3). LSI also presen-
ted low correlations with the rest of the shape indices
considered (Table 4). This is due to the fact that this
index is not really related to shape irregularity or com-
plexity, but much more to pattern fragmentation. As
illustrated in Figure 5, LSI may assign higher values
to fragmented but simple patterns than to others with
more complex and convoluted shapes. In our data,
the Pearson’s correlation of LSI with the number of
patches in the class (an index related to fragmentation)
was as high as r = 0.826. Moreover, Bogaert et al.
(2002) showed that LSI conveys the same information
than the index proposed by He et al. (2000) to quantify
pattern aggregation.

Another index that presented low correlations with
the rest of the shape indices was
MPAR (Table 4), which also performed poorly for
the purposes of our study (Table 2). As for LSI, this
is due to inherent limitations of the index for char-
acterising forests shape. The problem with MPAR
is that the perimeter-area ratio (PAR) is negatively
correlated with patch size (Hulshoff 1995). Holding
shape constant, a decrease in patch size will cause
an increase in PAR (McGarigal et al. 2002). In our
study, an extremely large MPAR value was obtained
for Pinus sylvestris forests in the province of Pon-
tevedra (Table 1), which is just because this class is
by far the less abundant and with smallest patches of
all classes considered (Table 1). This extreme value
for this class caused the percent overlap for MPAR to
be very low, but the discrimination (number of runs)
was not significantly better than random (Table 2). On

Figure 6. Two sets of patches in which the perimeter-area fractal
dimension (PAFD) has been calculated, yielding PAFD = 1.0 for
the four patches in the top and PAFD = 1.5 for those in the bottom.
The shape index (SI) for all the four patches in the top is SI = 2.6,
while in the patches in the bottom it increases from SI = 1.0 (cicular
patch in the left) to SI = 1.4 (patch in the right).

the contrary AWMPAR, by treating all class area and
perimeter as one single large patch (Equation 3), ap-
pears to be free from these limitations and was one of
the best performing indices (Table 2).

The fractal background of PAFD may be prom-
ising for characterising landscape shape complexity,
and this has made this index widely used in recent
landscape studies (Luque 2000; Peralta and Mather
2000; Imbernon and Branthomme 2001; Saura and
Martínez-Millán 2001; Tischendorf 2001; Cumming
and Vernier 2002; Saura 2002). Although PAFD
provided a significant discrimination of native and
exotic forests, it did not perform better than other more
classical and simpler indices like MSI or AWMPAR
(Table 2). Also, PAFD did not detect really well the
differences in the shape of some types of pure and
mixed forests, as noted in results section (Table 3).
PAFD may be more easily and adequately interpreted
by rearranging Equation 4 as:

SI = k × a
PAFD−1

2 (9)

where PAFD=1 means that the shape index (SI, Equa-
tion 1) of the patches is constant regardless their size,
and PAFD=2 implies that the shape index of the
patches increases proportionally to their size. That is,
PAFD should be interpreted as the rate at which the
shape index (SI) of the patches increases with their
size. PAFD may assign in some cases (in which self-
similarity does not exist) higher values to patterns
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with simple shapes than to other patterns with more
complex boundaries (Figure 6). PAFD is only a true
measure of shape complexity when the pattern under
analysis is really self-similar; in other case, PAFD
is not necessarily measuring boundaries complexity.
This may be limiting the performance of PAFD for
discriminating the shapes of native and exotic forests,
since landscape patterns have been shown not to
be perfectly self-similar across all ranges of scales
(Krummel et al. 1987; Pastor and Broschart 1990; Le-
duc et al. 1994). In any case, PAFD performed much
better than MFD and AWMFD (Table 2). Despite the
name given in previous literature to MFD and AW-
MFD, there is little fractal background in these two
indices. They are just obtained from an index value
computed individually for each patch (that is later
averaged at the class level), with no assessment of
the variations of perimeter length with scale or patch
size (which should be the basis for any true fractal
measurement).

AWMCON performed considerably well for dis-
criminating native and exotic forests, the opposite
occurring for MCON (Table 2). However, the com-
putation of AWMCON is rather cumbersome (LaGro
1991; McGarigal et al. 2002), making this index dif-
ficult to interpret. AWMCON has an extremely high
correlation with AWMPAR (Table 4, r = −0.9998);
in our data both indices conveyed the same informa-
tion. Since AWMPAR is much easier to compute and
interpret than AWMCON (AWMPAR is just a ratio
between total class perimeter and total class area),
there is little reason to support the use of AWMCON as
a measure of shape irregularity. It seems that the met-
rics related to the contiguity index proposed by LaGro
(1991) did not add much of interest for the purposes
of our study.

Other indices that were computed as area-weighted
versions (AWMSI, AWMCIR, AWMLA) did not per-
form significantly better than random for distinguish-
ing native and exotic forests, while the opposite oc-
curred with their non-weighted counterparts (MSI,
MCIR, MLA) (Table 2). It seems that the way the
indices values for individual patches are summarized
at the class level can have a big influence on res-
ultant discrimination. In these cases using area as a
weighting factor resulted in a poorer performance of
the class-level indices.

Further research and limitations

We have found systematic differences in the shape of
native and exotic forests, and we have suggested that
these differences are due to the combined effects of
direct human action and other topographical and hy-
drological factors. Further quantitative analysis on the
relative contribution of each of these factors to the
shape of the different forest classes is part of our on-
going research. In particular, we are working on com-
bining shape indices with information derived from
digital elevation models, in order to quantitatively as-
sess the direct and indirect effects of topography on
forests shape (e.g., Dorner et al. 2002). We expect
that this may provide further insight into the way
forest boundaries are configured by the combination
of natural and human influences.

In a latter stage, this may allow assigning de-
grees of naturality to different areas within the forest
landscape from the information conveyed by shape ir-
regularity indices. Potentially, shape indices may be
also useful as indicators of forest biodiversity from
a landscape perspective, as already found for cer-
tain species in agricultural landscapes by Moser et al.
(2002). This kind of species richness and biodiversity
predictions from landscape metrics may be expected to
be less precise but also much more cost-efficient than
estimations based on field inventories.

Our results may also help in selecting the most ad-
equate shape indices for aiding in the discrimination
of land cover classes that may not be fully separable
from their spectral properties. This would result in an
improved accuracy in the classification of remotely
sensed images, since it has been shown that classi-
fication confusion can be significantly reduced when
shape information is involved (Xia 1996).

This study has considered a much larger num-
ber of forest classes than previous analysis of forest
shape. However, our analysis focused in the land-
scapes of Galicia, and indices discrimination may vary
in other regions with different climatic characteristics,
vegetation types or degrees of human influence. Fur-
ther research may focus on evaluating and extending
to other landscapes the results that we obtained for
Galicia. For example, it should be noted that the only
riparian forest class considered in this study corres-
ponds to native A. glutinosa forests in the province of
A Coruña. In other study areas abundant exotic forests
along river margins may be present (e.g., certain Pop-
ulus sp. plantations in other regions of Spain). In this
case, the discrimination of native and exotic forests



661

may be more complicated, since the values of many
shape indices for these riparian exotic forests would
be significantly increased by their elongated charac-
ter, despite the real complexity of their boundaries.
Further research should focus on separately quantify-
ing the elongation and inherent complexity of forests
shape in order to achieve a successful discrimination
in those cases.

Also, single-scale data (1:50 000) have been used.
It would be interesting to investigate how the shape
differences between forest types may fade or become
more evident at finer or coarser scales. However, forest
maps at a scale coarser than 1:50 000 do not usually
have a detailed enough legend for differentiating each
of the tree species present in the forests, as required
for a study of this kind. For example, the CORINE
Land Cover European Database (Commission of the
European Communities, 1993) provides information
on the distribution of forests in Galicia at a scale
1:100 000, but in this land cover map only three types
of forests are discriminated (broad-leaved, coniferous
and mixed forests). Finally, we have analysed the
shape of the forests at the class level. Further research
may consider the same indices computed at the patch
or landscape level.
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