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Abstract

One of the most rapidly growing applications of remotely sensed data is the derivation of landscape pattern metrics for the
assessment of land cover condition and landscape change dynamics. The availability of a wide variety of sensors allows for
characterisation of land cover at multiple spatial scales, and increases the need for practical scaling techniques that permit the
comparison of pattern estimates across different spatial resolutions. Previous research has reported on scaling functions describing
the variations of different landscape pattern metrics with spatial resolution; this may be particularly useful in downscaling spatial
pattern characteristics, but no quantitative results or independent validation have been reported yet in this respect. We analysed a
wide set of landscape data derived from remotely sensed images covering different study areas, sensor spatial resolutions, and
classification approaches (pixel-based and object-based), which were aggregated to coarser resolutions through majority filters. We
considered eight landscape pattern metrics for which predictable scaling functions have been reported, and compared the subpixel
estimates provided by those scaling functions (when fitted to the metric values for different ranges of spatial resolution above the
pixel level) with the true value of the metric at the subpixel resolution. We found that for metrics like mean patch size, landscape
shape index or edge length, quite accurate subpixel estimates were achieved in all the datasets, even for relatively large
downscaling factors. However, the opposite was the case for several of the metrics for which a predictable scaling behaviour had
been previously described. The most accurate subpixel estimates were obtained when only a narrow range of spatial resolutions
(closest to the subpixel resolution) was used to fit the scaling function, suggesting that the scaling functions are not fully scale
invariant. We also found that the performance of available scaling functions is much lower in object-based data (in comparison with
per-pixel classified data) for ranges of spatial resolution below the characteristic minimum mapping unit of the interpreted or
segmented image. We conclude that scaling functions may be useful and reasonably accurate for estimating pattern metrics at the
subpixel level, but only if the specific scaling recommendations and limitations reported in this study are taken into account.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

One of the most rapidly growing applications of
remotely sensed data is the derivation of landscape pattern
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metrics for the assessment of land cover condition and
landscape change dynamics (Betts et al., 2003; Colombo
et al., 2004; Egbert et al., 2002; Griffith et al., 2003;
Hansen et al., 2001; Imbernon and Branthomme, 2001;
Jorge and García, 1997; Millington et al., 2003; Peralta
and Mather, 2000; Sader et al., 2003; Sachs et al., 1998;
Skole and Tucker, 1993; Vogelmann, 1995; Yu and Ng,
2006). This is due to the increasing awareness of the
effects of the spatial arrangement of ecosystems on dif-
ferent ecological processes (spread of forest fires and
other disturbances, species richness distribution, move-
ment and persistence of animal populations, water flows,
etc.), all of them relevant for the maintenance of bio-
diversity (e.g. Forman, 1995; Turner, 1989). The quantifi-
cation and monitoring of spatial patterns at the landscape
scale is made possible by the analysis of satellite images,
which provide the necessary information in a digital
format over large areas in a cost effective manner.

Satellite images with various spatial resolutions are
used as the primary source of information for the anal-
ysis of landscape patterns. The availability of a wide
variety of sensors allows for the characterisation of land
cover at multiple spatial scales; moreover, a multi-scale
assessment has been recommended in order to ade-
quately characterise and monitor landscape patterns,
since both pattern and process in ecological systems
often operate on multiple scales (Wu, 2004). In this
context, there is an urgent need of practical scaling
techniques that allow for comparing and transferring
pattern estimates across different spatial resolutions
(Saura, 2004).

Numerous studies have analysed the effect of spatial
resolution on landscape pattern metrics (Benson and
MacKenzie, 1995; Frohn, 1998; Frohn and Hao, 2006;
Frohn et al., 1996; García-Gigorro and Saura, 2005;
Hlavka and Livingston, 1997; Kojima et al., 2006;
Millington et al., 2003; Saura, 2001, 2004; Turner et al.,
1989; Wickham and Riitters, 1995; Wu et al., 2000,
2002; Wu, 2004). It is well known that there are large
differences in the values of the fragmentation indices
derived from satellite images with different spatial re-
solutions, and the general trends of the variations of these
metrics with spatial resolution have been characterised.
Different authors have experimentally found that the
variation of several landscape pattern metrics with
spatial resolution can be described through scaling
functions such as power laws (Frohn, 1998; Frohn and
Hao, 2006; Saura, 2001, 2004; Wu et al., 2002; Wu,
2004). Considering the apparent good fit of these scaling
functions to a wide set of landscape data, it has been
suggested that the extrapolation and interpolation of
these metrics across different pixel sizes can be done
simply and accurately (Wu et al., 2002; Wu, 2004).
However, Saura (2004) noted that the coefficients of the
scaling functions (which are needed for the scaling
process itself) cannot be known a priori for a certain
image or landscape, rather they have to be determined
empirically by previously fitting the scaling function to a
set of metric values computed on the aggregated image at
different spatial resolutions. For this reason, scaling
functions seem to be of little aid for upscaling pattern
estimates (i.e. obtaining metric values at coarser spatial
resolutions), since in fact they require as an input those
metric values at broader pixel sizes. The major interest of
these scaling functions may be estimating pattern metrics
at the subpixel level (i.e., at a spatial resolution finer than
the original pixel size of the image). In fact, this may
represent the only operational procedure to downscale
spatial pattern characteristics (Saura, 2004), although no
quantitative results have been provided yet, apart from a
single forest class and range of spatial resolutions by
García-Gigorro and Saura (2005), who found poor
results with the use of scaling functions for downscaling
three fragmentation metrics. As noted by García-Gigorro
and Saura (2005), the downscaling problem may be
much more complicated than the upscaling one, since it
implies predicting a metric value corresponding to a fine
spatial resolution that is not available in existing data and
that in principle cannot be recreated by combining the
information existing in coarse-scale data (but see Tatem
et al., 2002).

Indeed, most of the previous research has not gone
beyond a descriptive analysis of scale effects on pattern
metrics. In this study, we intend to go further by quan-
titatively assessing and validating the true accuracy and
utility of available scaling functions for obtaining sub-
pixel estimates of pattern metrics, by analysing a broad
set of landscape data derived from remotely sensed data
covering different study areas, sensor spatial resolu-
tions, and classification approaches. Specifically, we
perform an independent validation of these functions by
fitting them to different ranges of spatial resolution
(always broader than the subpixel resolution to be
estimated), and comparing the subpixel estimates
obtained through the scaling functions with the true
value of the pattern metrics at that resolution. We
analyse how the accuracy of subpixel pattern estimates
varies for different metrics, ranges of spatial resolution
used to estimate the scaling behaviour, downscaling
factors, and classification approaches adopted to extract
the pattern information from the remotely sensed data.
Finally, we provide recommendations for the adequate
use of scaling functions for downscaling landscape
pattern characteristics.
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2. Methods

2.1. Spatial data

We analysed the following four different land cover
datasets (Fig. 1) derived from remotely sensed images
covering four study areas with different sensor spatial
resolutions and classification approaches commonly
used for landscape pattern analysis:

– A (Fig. 1). A 4000×4000 pixel subset of the Global
Land Cover (GLC) Characteristics Database (ver-
sion 1.2) for Eurasia, developed by the U.S.
Geological Survey (USGS), the University of
Nebraska—Lincoln, and the European Commis-
sion's Joint Research Centre. This is a 1-km reso-
lution dataset based onmulti-temporal unsupervised
Fig. 1. Location of the four analysed datasets. A) Subset of the Global La
B) Subset of the USGS National Land Cover (NLC) Dataset for Oregon (bott
Spain (upper left). D) Spanish Forest Map (SFM) for the region of Murcia (
per-pixel classification of Advanced Very High
Resolution Radiometer (AVHRR) data (spanning
April 1992 through March 1993), with post-
classification refinement using multi-source earth
data (Loveland et al., 2000). This database is
available at http://edcsns17.cr.usgs.gov/glcc/. The
USGS Land Use/Land Cover System Legend
differentiates up to 24 land cover classes. The
most abundant land cover classes in the analysed
subset were grassland, shrubland, barren or sparsely
vegetated, mixed forest, deciduous needleleaf
forest, dryland cropland and pasture, and wooded
tundra.

– B (Fig. 1). A 4000×4000 pixel subset of the USGS
National Land Cover (NLC) Dataset 1992 for
Oregon, USA. This dataset comprises 21 different
classes and has a spatial resolution of 30×30 m. It
nd Cover Characteristics (GLC) Database for Eurasia (upper right).
om left). C) Subset of the CORINE European Land Cover Database for
upper left, SE Spain).

http://edcsns17.cr.usgs.gov/glcc/
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has been derived from the per-pixel classification
of Landsat Thematic Mapper (TM) data through an
unsupervised clustering algorithm, with the result-
ing clusters refined and labelled using aerial
photography, ground observations, and various
ancillary data (Vogelmann et al., 1998a,b). This
dataset is available at http://edc.usgs.gov/products/
landcover/nlcd.html. The most abundant land
cover classes in the analysed subset were shrub-
land, evergreen forest, grasslands/herbaceous, bare
rock/sand/clay, emergent herbaceous wetlands,
pasture/hay, and open water.

– C (Fig. 1). A 4000×4000 pixel subset of the
CORINE European Land Cover Database (Com-
mission of the European Communities, 1993) for
Spain. This dataset is derived from the interpre-
tation of satellite images (Landsat TM, Landsat
MSS, Spot XS) and ancillary data (Commission
of the European Communities, 1993). It has a
hierarchical legend with 44 land cover classes, a
minimum mapping unit of 25 ha, and is distrib-
uted as a raster dataset with a spatial resolution
of 100×100 m. The most abundant land cover
classes in the analysed subset were non-irrigated
arable land, sclerophyllous vegetation, natural
grassland, agro-forestry areas, broad-leaved for-
est, transitional woodland-scrub, complex culti-
vation patterns, and coniferous forest.

– D (Fig. 1). Spanish Forest Map (SFM) for the region
of Murcia (3077×2998 pixels), developed in co-
ordination with the Third Spanish National Forest
Inventory (Ministerio de Medio Ambiente, 2002).
The SFM was obtained from the interpretation of
aerial photographs, combined with pre-existing
maps and field inventory data. The minimum
mapping unit is typically 6.25 ha, decreasing to
2.2 ha in the case of forest patches embedded in a
non-forest land use matrix. Land cover is classified
into 35 categories including both forest and non-
forest types. This map is analysed in raster format
with a spatial resolution of 50×50 m for the
characterisation of forest landscape structure and
configuration within the Third Spanish National
Forest Inventory (Ministerio de Medio Ambiente,
2002). The most abundant land cover classes in
Murcia are agricultural lands, natural forest,
grassland, plantation forest, and artificial areas.

Two of these datasets were obtained through per-
pixel classifiers (GLC, NLC), while the other two
(CORINE, SFM) were derived as object-based classi-
fications from the interpretation of remotely sensed
images by human analysts. The scale of the GLC and
NLC is characterised by the pixel size or spatial reso-
lution of the satellite images, while in the CORINE and
SFM the degree of spatial detail is determined by the size
of the minimum mapping unit (MMU, which is much
larger than the pixel size of the interpreted image).
Object-based classifications can be obtained either
through image interpretation or through segmentation
algorithms applied to remotely sensed data. This results
in a partition of the image into spatially continuous, non-
intersecting and homogeneous (according to certain
criteria) regions or objects (Desclée et al., 2006; Hay
et al., 2003; Pal and Pal, 1993). Instead of analysing
single pixels independently of their location, similar
contiguous pixels are grouped into objects, which allows
for the incorporation of valuable information contained in
the relationships between adjacent pixels, including
texture, context and shape (Benz et al., 2004; Desclée
et al., 2006; Laliberte et al., 2004; Walter, 2004).

The datasets were aggregated into coarser spatial
resolutions through majority filters (as in Benson and
MacKenzie, 1995; Frohn, 1998; Saura, 2001; Turner et
al., 1989; Wickham and Riitters, 1995; Wu et al., 2002;
Wu, 2004) applied to the original images (in windows of
3×3, 5×5, 7×7, 9×9 pixels, etc.), up to where the ag-
gregated images resulted in a minimum of 100×100 pix-
els, as inWu et al. (2002) andWu (2004). This resulted in
a maximum aggregation corresponding to a 39×39 filter
for GLC, NLC and CORINE datasets and to a 31×31
filter for the SFM. Only land cover classes sufficiently
abundant to remain present in the images for a wide range
of spatial resolutions after aggregation were included in
subsequent analysis. This resulted in 61 classes for the
four datasets, and a total of 1188 values for each pattern
metric (for the different classes and aggregations).

2.2. Pattern metrics

We analysed the scaling behaviour of eight landscape
pattern metrics for which a stable and predictable scaling
function has been reported in previous studies (Frohn,
1998; Frohn and Hao, 2006; Saura, 2001, 2004;Wu et al.,
2002; Wu, 2004), and particularly in Wu (2004). Some
metrics were not considered because essentially they
quantified the same information as the metrics that were
already included. For example, patch density and edge
density were not analysed because they were redundant
with number of patches and edge length, since the extent
is kept constant while varying the spatial resolution. All
the metrics were computed at the class level (i.e. a single
metric value summarising the spatial characteristics of all
the patches within a certain land cover class), both on the

http://edc.usgs.gov/products/landcover/nlcd.html
http://edc.usgs.gov/products/landcover/nlcd.html
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original and aggregated images through the Fragstats 3.3
software (McGarigal et al., 2002). Further details on the
ecological implications of these pattern characteristics can
be found in Forman (1995). The eight analysed metrics
are:

1. Number of patches (NP), where a patch is defined
by the 8-neighbourhood rule (set of pixels belonging
to the same class and sharing one of their sides
or vertices), with a higher NP indicating greater
fragmentation.

2. Mean Patch Size (MPS), a simple and common
fragmentation metric, with a lower MPS indicating
greater fragmentation.

3. Patch Size Standard Deviation (PSSD).
4. Largest Patch Index (LPI), defined as the percent of

total image area occupied by the largest sized patch
of the class of interest.

5. Edge length (EL), where an edge is defined as any
side shared between two pixels belonging to different
classes (one of them being the class under analysis).
EL is regarded as a good indicator of pattern frag-
mentation, with more fragmented patterns yielding a
higher EL.

6. Landscape shape index (LSI), computed as the total
class perimeter divided by the minimum perimeter
possible for a maximally aggregated class, which is
achieved when the class is maximally clumped into
a single, compact patch (McGarigal et al., 2002).
Despite the name given to this metric, LSI does not
really measure pattern shape, but is more related
to the degree of pattern fragmentation (Saura and
Carballal, 2004), and conveys the same information
as the aggregation index by He et al. (2000).

7. Area-weighted mean shape index (AWMSI), com-
puted as an area-weightedmean of the shape index for
each patch in the analysed class, where the shape
index equals the patch perimeter divided by the mini-
mum perimeter possible for a maximally compact
shape (in a square raster format) of the same area as
the analysed patch (McGarigal et al., 2002). AWMSI
is a measure of shape irregularity and increases (with
no theoretical upper limit) for more complex or
elongated shapes (Saura and Carballal, 2004), attain-
ing its minimum (AWMSI=1) when all the class
patches are maximally compact.

8. Area-weighed mean patch fractal dimension
(AWMFD), computed as an area-weighted mean of
the fractal dimension index for each patch in the
analysed class, where the patch fractal dimension
equals two times the logarithm of patch perimeter
(where the perimeter is divided by four to correct for
the raster bias in perimeter) divided by the logarithm
of patch area (McGarigal et al., 2002). AWMFD
attains its minimum value (AWMFD=1) for com-
pact shapes and, as with the AWMSI, increases for
more complex or elongated shapes (Kojima et al.,
2006; Saura and Carballal, 2004).

2.3. Scaling functions and accuracy testing

The variation with spatial resolution of six of the
described class-level metrics has been shown to follow a
power law (Eq. (1)) (Wu, 2004), either increasing (MPS)
or decreasing (NP, EL, LSI, AWMSI, AWMFD), while
for the other two the appropriate scaling function is an
increasing linear (PSSD, Eq. (2)) and logarithmic func-
tion (LPI, Eq. (3)) (Wu, 2004), as follows:

y ¼ adxb ð1Þ

y ¼ adxþ b ð2Þ

y ¼ adln xþ b ð3Þ

where y is the metric value corresponding to a spatial
resolution of x (length of the pixel side), and a and b are
constants that characterise the metric scaling behaviour.
The most appropriate scaling function for each metric
(Wu, 2004) was fitted to the metric values at different
spatial resolutions through least-squares linear regres-
sion (as in previous studies on this topic), which
corresponds to Eq. (2) for PSSD, Eq. (3) for LPI and to a
double-logarithmic linear transformation of the power
law (Eq. (1)) for the rest of the metrics.

We fitted the scaling functions to different sets of
metric values corresponding to different ranges of
spatial resolution (obtained from the aggregated data
described earlier). The target resolution (i.e., the spatial
resolution at which the pattern metric value is to be
estimated through the scaling functions) was always
finer than the spatial resolutions used to fit those scaling
functions. The target resolution was in most cases the
original (finest) spatial resolution of each dataset
(1000 m for GLC, 100 m for CORINE, 50 m for SFM
and 30 m for NLC), although bigger pixel sizes were
also considered, as will be shown later. Comparison of
the true value of the pattern metrics at the target reso-
lution with those obtained at that resolution through the
scaling functions allowed us to assess and validate the
accuracy of the subpixel estimates (pattern metric values
estimated at a finer resolution than the finest used to fit
the scaling function). The number of data points (metric
values for different spatial resolutions) used to fit the
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power law was varied to assess how this may influence
the resultant subpixel estimates. Obviously, a minimum
of two data points was required to determine the two
parameters in the scaling functions (Eqs. (1), (2), and
(3)) (e.g. metric values at 300 and 500 m to fit the
scaling function and estimate the metric value at the
100 m target for the CORINE dataset).

The downscaling performance of the scaling func-
tions was quantified through the accuracy improvement
percentage (AI), theoretically ranging from −100 to
100, and computed as:

AIð%Þ ¼ 100
jYfin � Yactj � jYest � Yactj
jYfin � Yactj þ jYest � Yactj ð4Þ

where Yact is the actual value of the pattern metric at the
target resolution (directly computed on actual spatial
data at that spatial resolution, and not estimated through
the scaling function), Yest is the pattern metric value at
the target resolution estimated through the scaling func-
tion and Yfin is the actual pattern metric value in the
finest spatial resolution used to fit the scaling function
for the downscaling process (this finest resolution is
always coarser than the target resolution). When the
scaling function provides a perfectly accurate subpixel
estimate (Yest=Yact) then AI=100%. If Yfin=Yest then the
scaling function has not contributed to any improvement
in the downscaling procedure (and then AI=0%);
simply taking as the subpixel estimate the metric value
corresponding to the finest available resolution (the finest
resolution that was used to fit the power law) would
provide the same result without need for any scaling
function. Negative AI values will be obtained when the
scaling function estimate is less accurate than just using
the metric value at the finest available resolution as the
subpixel estimate, a case in which the use of a scaling
function should be avoided. Quantifying the downscaling
accuracy through AI (instead of other simpler measures
such as the standard deviation between Yact and Yest) is
particularly important and necessary in this context to
take into account the different ranges of variation that
each metric has in reality. These can be quite different
depending on the analysed metric and often much
narrower than its theoretical range of variation (Kojima
et al., 2006; Saura and Martínez-Millán, 2001; Saura,
2002). For example, the subpixel estimate for a metric
with a low variability in actual landscape patterns may, by
being close to the actual target value (low relative error),
provide a false impression of accuracy. In fact, any metric
value at any resolution may be close to the actual target
value, and by simply taking Yfin as the subpixel estimate
the result may be more accurate.
3. Results and discussion

3.1. Pixel-based versus object-based classified remotely
sensed images

We found that in general subpixel estimates were
much more accurate for the GLC and NLC datasets (per-
pixel classifications of remotely sensed data) than for
the CORINE and SFM images (object-based classifica-
tions derived from image interpretation) when the target
resolution was at the finest scale for which those data
were available (Figs. 2 and 3). For example, the accu-
racy improvement (AI) for MPS was about 80% for
GLC and NLC data (Fig. 2), while it was only about
20% and −70% for SFM and CORINE data, respec-
tively (Fig. 3). Similar results were obtained for most of
the pattern metrics.

These results were obtained for a target resolution
much below the size of the objects (minimum mapping
unit, MMU) characteristic of the CORINE and SFM
data (Fig. 3), with an MMU of 25 ha and 6.25 ha,
respectively, which is equivalent to a pixel size of about
500 m and 250 m. When spatial resolution is varied
below the size of the classified objects, variations of
many pattern metrics are much lower than when pixel
sizes increase above the MMU (see Fig. 4 for the NP and
EL and its comparison with pixel-based data). In an
extreme case, the effect would be the same as when
resampling an image at a spatial resolution below the
original pixel size; the spatial resolution (number of
pixels) would increase, but the underlying spatial pattern
would not present any visible change (García-Gigorro
and Saura, 2005). Therefore, the scaling behaviour of
pattern metrics may differ considerably in each of these
two cases (pixel-based and object-based classifications),
and the scaling functions that best describe metrics
variation may also be different (Fig. 4). All the scaling
functions for landscape pattern metrics reported thus far
have been based only on per-pixel classifications of
remotely sensed data (Frohn, 1998; Frohn and Hao,
2006; Saura, 2001, 2004; Wu et al., 2002; Wu, 2004),
and may not perform well for land cover data derived
from the interpretation or segmentation of remotely
sensed images, at least when scaling at spatial resolu-
tions below the MMU (Fig. 4). In this latter case, we
found a poor performance of available scaling functions,
which may even yield negative AI in a considerable
number of cases (Fig. 3). However, when the target
resolution and ranges of spatial resolutions used for
downscaling are clearly above the MMU we obtained
much more accurate subpixel estimates for the object-
based datasets (Fig. 5), which are very similar to those
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reported for theGLCandNLC images (Fig. 2). Throughout
the next sections, we focus on analysing the results of the
subpixel estimates above the MMU for the CORINE and
SFM datasets (Fig. 5).
Fig. 2. Mean accuracy improvement (average of the AI values for the differe
different pattern metrics and ranges of spatial resolutions used to fit the scalin
shown for the GLC and NLC pixel-based datasets for a target resolution of
This is an important issue to consider since many
landscape products are obtained from the segmentation
or interpretation of remotely sensed images, rather than
from pixel-based classifications. Object-based analysis
nt land cover classes in each dataset) of the subpixel estimates for the
g functions (“range of spatial resolution for downscaling”). Results are
1000 m and 30 m, respectively.



Fig. 3. Mean accuracy improvement (average of the AI values for the different land cover classes in each dataset) of the subpixel estimates for the
different pattern metrics and ranges of spatial resolutions used to fit the scaling functions (“range of spatial resolution for downscaling”). Results are
shown for the CORINE and SFM object-based datasets for a target resolution (100 and 50 m respectively) below their minimum mapping unit (25 ha
and 6.25 ha, respectively).
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Fig. 4. Variation of two pattern metrics (NP and EL) as a function of spatial resolution in pixel-based data (GLC) and object-based data (CORINE) for
two representative land cover classes (deciduous needleleaf forest and sclerophyllous vegetation, respectively). Previous studies have found power
scaling functions to be the most appropriate for NP and EL, which would ideally result in NP and EL values (dots) following a perfect straight line in
this double-log representation; the fitted power law (lines) and the resultant R2 are included in each case. The dashed vertical lines in the CORINE
plots correspond to the spatial resolution (500 m) equivalent to the MMU (25 ha) of this dataset. The scaling behaviour is similar for the other land
cover classes and datasets with the same classification type.
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is becoming more common in remote sensing for several
reasons. First, much information is contained in the
relationships between adjacent pixels, including texture,
context and shape information, which allows the
identification of individual objects as opposed to single
pixels (Benz et al., 2004; Desclée et al., 2006; Hay et al.,
2003; Laliberte et al., 2004; Walter, 2004). The easy
integration of additional knowledge in object-oriented
classifications is a valuable means to distinguish ecolog-
icallymeaningful land cover types that do not have distinct
spectral features, resulting in higher classification accura-
cies, particularly when high resolution images and
heterogeneous land cover classes are involved (Bock
et al., 2005;Desclée et al., 2006; Ehlers et al., 2003;Herold
et al., 2002). On the other hand, ecologically speaking, it
may be more appropriate to analyse objects as opposed to
pixels because landscapes consist of patches that can be
detected in the imagery with object-based analysis
(Laliberte et al., 2004). The appearance of homogenous
objects (rather than the per-pixel structure) is considered
very valuable because it more likely relates to actual land
use patterns in the landscape (Bock et al., 2005). Finally,
land cover maps may not be accepted by end users when
they show a “salt and pepper” appearance, as is often the
case for pixel-based classifications (Bock et al., 2005). For
these reasons, even when a map is obtained by means of
per-pixel classifiers, post-classification processing tech-
niques (such as majority filters, proximity functions,
connectivity criteria) are often applied so that regions less
than a present minimal area are removed (Davis and Peet,
1977; Homer et al., 1997; Imbernon and Branthomme,
2001; Kim, 1996; Saura, 2002). In any case, raster
landscape data are distributed and available at pixel sizes
below the final MMU, since this allows a better definition



Fig. 5. Mean accuracy improvement (average of the AI values for the different land cover classes in each dataset) of the subpixel estimates for the
different pattern metrics and ranges of spatial resolutions used to fit the scaling functions (“range of spatial resolution for downscaling”). Results are
shown for the CORINE and SFM object-based datasets for a target resolution (1100 and 550 m respectively) above their minimum mapping unit
(25 ha and 6.25 ha, respectively).
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of patches boundaries with a subsequent benefit in terms
of the spatial accuracy of the dataset.

3.2. Ranges of spatial resolution and downscaling
factors

In the majority of the cases (83%) the highest AI for
downscaling was obtained when only a few data points
(values of the pattern metrics from two to six different
spatial resolutions) were used to obtain the scaling
function parameters and get the subpixel estimate at the
target resolution (Figs. 2 and 5). Using only the two data
points closest to the target resolution was the best
downscaling procedure in many cases, especially for the
pixel-based images (Fig. 2), while for the MMU images
(with a target resolution above MMU, as noted in
previous section) using about four to six data points
tended to produce more accurate results (Fig. 5). This
partially supports, with amuchwider experimental basis,
the results obtained by García-Gigorro and Saura (2005).
They tried to estimate the values of NP,MPS and EL for a
single forest class at 30 m of spatial resolution from
scaling laws derived from an IRS-WiFS image (188 m,
pixel-based classification). It was concluded that using
only two data points provided the best result and that the
“estimation errors resulted much larger as we considered
additional spatial resolutions (coarser than 376 m and
further apart from the target resolution of 30 m) for
determining power law coefficients”.

These results suggest that the scale behaviour of the
pattern metrics (as described by available scaling
functions) is not invariant across the full range of spatial
resolutions. The rate of variation of the pattern metrics
(as given by the scaling functions coefficients) estimated
from a wide range of spatial resolutions diverges from
the characteristic variation at subpixel resolutions. For
this reason, using only a few metric values (those cor-
responding to the spatial resolutions closest to the target)
produced the best results, compensating the fact that, at
first glance, using fewer data points to fit the scaling
functions may be considered less reliable from a sta-
tistical point of view.

As expected, the higher the downscaling factor (ratio
between the finest available spatial resolution and the
target spatial resolution, both measured as the length of a
pixel side) the lower the accuracy of the resultant sub-
pixel estimates (Fig. 6). This is a consequence of the fact
that scaling functions do not perfectly replicate the
variations of pattern metrics with spatial resolution, as
noted earlier. Therefore, the extrapolation to increasing-
ly finer pixel sizes has to be limited considering the true
accuracy that these functions provide (Fig. 6). However,
subpixel estimates were quite accurate in some cases
even for considerably large downscaling factors: for
example, in the GLC dataset, a downscaling factor equal
to three resulted in AI of 88% for MPS and 61% for EL,
and for a downscaling factor equal to 11 AI was 78%
and 40%, respectively (Fig. 6).

3.3. Accuracy of the subpixel estimates for the different
pattern metrics

For some metrics quite accurate subpixel estimates
were achieved by using the scaling functions in all the
datasets (for the best ranges of spatial resolution for
obtaining the scaling laws parameters, as described in
previous section). This is the case for MPS (AI about
70%–90% for all the datasets), LSI (AI about 65%–75%),
and EL (AI about 60–70%) (Figs. 2 and 5). Scaling
functions also proved useful for NP, achieving AI ranging
from about 40% to 70%. However, scaling functions
performed poorly for other metrics like LPI, for which a
very low AI (even negative in most of the cases) was
obtained (Figs. 2 and 5). For most of the metrics, there
were no large differences between the average AI for the
different datasets (Figs. 2 and 5). However, for the two
shape metrics considered in this research (AWMSI and
AWMFD) scaling functions performed much better in
pixel-based images (GLC and NLC, achieving mean AI
above 60%, Fig. 2) than in object-based images (CORINE
and SFM, with the mean AI always below 25%, Fig. 5).

Even when all eight metrics have been previously
reported as predictable in terms of their variations with
spatial resolution (Type 1 class-levelmetrics inWu (2004)),
we found large differences in the accuracy of the subpixel
estimates (in terms of AI) among pattern metrics (Figs. 2
and 5). Scaling functions have been described in the
literature for all thesemetrics, but the actual performance of
these functions seems to be highly variable depending on
themetric. However, it is interesting to note thatWu (2004)
differentiated two groups of predictable metrics: Type 1A
and Type 1B in that study. Type 1A metrics (NP, LSI, EL)
were those for which Wu (2004) obtained the most
predictable behaviour, with scaling functions being
consistent between the different analysed landscapes and
between the different cover types within each landscape,
while for Type 1B metrics (MPS, LPI, PSSD, AWMSI,
AWMFD) a higher variability in the scaling behaviour
between the different cover types within each landscape
was detected. This is partially concordant with our analysis
on downscaling accuracy; the three Type 1A metrics
according toWu (2004)were among the fourmost accurate
in our study, but the best performing metric (MPS) in our
subpixel estimates was considered as a Type 1B by Wu



Fig. 6. Mean accuracy improvement (average of the AI values for the different land cover classes in each dataset) of the subpixel estimates for the
GLC and SFM datasets and different downscaling factors (ranging from 3 to 21 for GLC and from 3 to 13 for SFM) for the different pattern metrics
and a target resolution of 1 km (GLC) and 50 m (SFM). Similar results are obtained for the NLC and CORINE datasets. AI values are here computed
maintaining in all cases the same value of the finest spatial resolution for downscaling within each dataset (Yfin=3000 m for GLC and Yfin=150 m for
SFM, Eq. (4)) in order to render comparable the accuracies corresponding to different downscaling factors.
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Table 1
Standard deviation of AI values for all the land cover classes in each of
the datasets, for the target resolution and range of spatial resolution
(range used to fit the scaling functions for downscaling) that provided
the best results in each dataset

Pattern
metric

GLC NLC CORINE SFM

Target:
1000 m

Target:
30 m

Target:
1100 m

Target:
550 m

Range:
3000–5000 m

Range:
90–150 m

Range:
1300–1900 m

Range:
650–1150 m

NP 31.6 51.8 40.6 30.7
MPS 11.1 24.6 44.6 21.0
PSSD 27.3 35.7 42.4 55.5
LPI 55.3 51.0 49.8 61.6
EL 22.1 26.6 35.9 26.4
LSI 19.3 25.6 32.8 15.5
AWMSI 38.5 31.1 54.6 42.6
AWMFD 31.5 26.4 49.6 49.4
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(2004). It should be noted that Wu (2004) did not provide
any quantitative measure of the accuracy, predictability or
goodness of fit of the different scaling functions andmetrics
types, whichmakes it difficult for further comparisons with
our accuracy assessment. Frohn and Hao (2006) also
concluded that LSI, NP and EL (these latter two measured
as their equivalent patch density and edge density) were the
most predictable with spatial resolution, which agrees with
our results.

Wu (2004) suggested that the variability among
cover types for Type 1B metrics may be caused by the
low abundance of some patch types. However, in our
data there was no strong effect from class abundance on
resultant AI. For example, on GLC data a linear regres-
sion between class abundance and AI for the different
metrics (using only two data points to obtain the scaling
law parameters, which is the most adequate for this
dataset, as shown in Fig. 2) yielded R2 ranging only
from 0.033 to 0.165. In fact, three of the four metrics
with the highest R2 were those classified as Type 1A
(LSI, NP, EL), with R2 about 0.150. Similar results were
obtained for the other datasets. We further examined if
other intrinsic characteristics of the analysed classes
(different from class abundance) were responsible for
the AI values we obtained. If that were the case, the
same classes would present the highest AI for the dif-
ferent metrics. However, Spearman's correlations be-
tween the classes' AI values for the different metrics
were not significant for any of the datasets, yielding
only an average value of r=0.269. Therefore, the AI
variability seems to be dependent on the predictability of
the scaling behaviour of each particular metric and on
the goodness of fit to the scaling variations of each
function, rather than on intrinsic characteristics of land
cover classes.

Very high determination coefficients (R2) have been
reported in previous research when fitting scaling func-
tions to pattern metrics; for example R2 above 0.96 has
been obtained when fitting power functions through
double-log linear regression (Frohn, 1998; Saura, 2004).
This has been interpreted to mean that these metrics
could be accurately extrapolated, transferred and com-
pared across scales (e.g. Frohn, 1998; Wu et al., 2002).
However, R2 is not a good predictor of function perfor-
mance, and the logarithmic transformation for fitting
power laws through linear regression may underestimate
the largest residuals and provide biased and inflated R2

values (Heth et al., 1989; Saura, 2004). Indeed, we
found that a high R2 does not imply a good accuracy
when downscaling through these functions. For exam-
ple, for the sclerophyllous vegetation CORINE class
and metrics in Fig. 4 we obtained a negative AI (as low
as −93% for NP and −23% for EL when using only two
data points for downscaling, which was the most
accurate choice), despite that the R2 values for the
power laws were as high as R2 =0.911 for NP and R2 =
0.964 for EL (Fig. 4). Apparently, R2 values that are
much higher than 0.95 are necessary to consider the
power functions reliable for this purpose. For example,
for the deciduous needleleaf forest GLC class (Fig. 4),
with R2 =0.999 for the double-log fit, we obtained
AI=52% for NP and AI=81% for EL (as before, when
using only two data points for downscaling).

Our results do not fully support those obtained by
García-Gigorro and Saura (2005) for a single forest class
in central Spain, who reported high errors when
estimating NP, EL and MPS values at 30 m of spatial
resolution from power functions derived from an IRS-
WiFS image (188 m) and concluded that these functions
may not be really accurate or useful for downscaling
fragmentation metrics. García-Gigorro and Saura (2005)
also found in their data that NP presented a considerably
lower accuracy than EL or MPS, and this is consistent
with our results. They also concluded that further research
on this scaling problem (with other spatial data and ranges
of spatial resolution) was required, which has been
addressed in this study. It is important to note that in some
cases we found a high variability of the AI values for
individual land cover classes, and therefore the results for
a single class may diverge from the mean AI reported
earlier (Figs. 2, 3 and 5). On average, the standard
deviation of AI values for the different classes, metrics,
and datasets was about 35%, being generally greater for
those metrics, ranges of spatial resolutions and datasets
with a poorer AI (Table 1). Standard deviations were
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lower for the best performing metrics (MPS, LSI, EL),
and higher for those metrics than provided less accurate
subpixel estimates like LPI (Table 1). Standard deviations
were also lower for the GLC dataset, where the highest AI
was obtained (Fig. 2, Table 1).

4. Conclusions

We have shown that scaling functions are not perfect
for downscaling landscape pattern metrics, but being
aware of their limitations and the conditions necessary for
their use, they can provide considerably accurate and
useful subpixel estimates, even for relatively large down-
scaling factors. Previous studies, considering the apparent
good statistical fit of scaling functions to metrics vari-
ations, have suggested that these functions may be used
successfully for accurately scaling landscape pattern with
no restrictions, in almost any circumstance. However, by
performing an independent validation of the true accuracy
of these scaling functions, we have shown that several
important issues have to be taken into account in the future
to avoid obtaining poor and potentially misleading results
(even negative accuracy improvements) through their use.
First, our results indicate that some of themetrics that have
been considered thus far as predictable (in terms of their
behaviour with spatial resolution) cannot be estimated
accurately at finer resolutions, while for some others high
accuracies can indeed be obtained (mean patch size,
landscape shape index, edge length). Second, we suggest
that only a few data points (those closest to the target
resolution) should be used to fit the scaling functions, and
not the full range of spatial resolutions that can be
obtained through aggregation, since the rate of metric
variation at increasingly broader scales diverges from the
characteristic variation at subpixel resolutions. Third, we
have shown that a good performance from available
scaling functions may only be obtained for ranges of
spatial resolutions above theminimummapping unit fixed
in the image segmentation or interpretation process. This
applies to object-based classification of remotely sensed
data, which is increasingly common due to the important
advantages that this classification approach presents for
landscape pattern analysis. Finally, it should be noted that
our results have been obtained for those metrics for which
a predictable scaling behaviour had been reported in
previous studies. Other patternmetrics may present erratic
variations with spatial resolution and, therefore, would
providemuch poorer subpixel estimates, since for themno
reliable or consistent scaling function has been found
(Wu, 2004).

It is important to note that downscaling through scaling
functions does not require any prior information on
pattern characteristics at the subpixel level, which makes
it a very attractive procedure. It also provides an overall
subpixel metric value for each of the land cover classes,
but not the spatial pattern itself nor the location of specific
land cover classes in individual pixels. Therefore, this is
different from the approach for mapping subpixel land
cover spatial patterns by Tatem et al. (2002), which is
based on a Hopfield neural network and requires prior
information on land cover pattern (quantified through
semivariance values in that study) at the target resolution,
providing multiple, equally probable land cover distribu-
tions that accommodate input semivariance values (Tatem
et al., 2002). An interesting topic for further research is the
possible integration of both approaches, so that scaling
functions estimate subpixel pattern characteristics as
quantified by different metrics (therefore avoiding the
need for prior information on subpixel pattern, whichmay
be quite difficult to have in practical applications) and the
Hopfield neural network approach provides subpixel
spatial patterns in accordance with those downscaled
metric values.

We believe that our results and recommendations
provide relevant insights into this important scaling
problem, in a context where satellite images with dif-
ferent spatial resolutions are increasingly being used for
the analysis of landscape pattern, which represents a key
variable to better understand and characterise many
ecological and environmental processes.
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