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Abstract. A key issue when generating a land cover map from remotely sensed
data is the selection of the minimum mapping unit (MMU) to be employed,
which determines the extent of detail contained in the map. This study analyses
the eVects of MMU in land cover spatial con� guration and composition, by using
simulated landscape thematic patterns generated by the Modi� ed Random
Clusters method. This approach allows a detailed control of the diVerent factors
in� uencing landscape metrics behaviour, as well as taking into account a wide
range of land cover pattern possibilities.

Land cover classes that are sparse and fragmented can be considerably misrep-
resented in the � nal map when increasing MMU, while the classes that occupy a
large percentage of map area tend to become more dominant.

Mean Patch Size and Number of Patches are very poor indicators of pattern
fragmentation in this context. In contrast, Landscape Division (LD) and related
indices (Splitting Index and EVective Mesh Size) are clearly suitable for comparing
the fragmentation of landscape data with diVerent MMUs.

We suggest that the Mean Shape Index, the most sensitive to MMU of those
considered in this study, should not be used in further landscape studies if land
cover data with diVerent MMU or patch size frequency distribution are to be
compared. In contrast, the Area Weighted Mean Shape Index presents a very
robust behaviour, which advocates the use of this index for the quanti� cation of
the overall irregularity of patch shapes in landscape spatial patterns.

The results presented allow quantifying the biases resulting from selecting a
certain MMU when generating a land cover dataset. In general, a bigger MMU
implies underestimating landscape diversity and fragmentation, as well as over-
estimating animal population dispersal success. Guidelines are provided for the
proper use and comparison of spatial pattern indices measured in maps with
diVerent MMUs.

1. Introduction
Two aspects de� ne the spatial characteristics of land cover thematic patterns:

con� guration and composition (Li and Reynolds 1994, Gustafson 1998).
Con� guration refers to the spatial arrangement of patches, including concepts such
as fragmentation or shape. Composition characterizes the number of patch types
present in the pattern and the percentage of the area occupied by each of them. Both
land cover composition and con� guration in� uence ecological processes such as
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biodiversity and animal population dispersal, predation and abundance (Fahrig and
Merriam 1985, Wilcox and Murphy 1985, Van Dorp and Opdam 1987, Andrén 1994,
Forman 1995, Kareiva and Wennergren 1995, Schumaker 1996, Wiens et al. 1997 ).
Pattern fragmentation produces also a decrease in the classi� cation accuracy of
remote sensed data (Campbell 1981, Cross et al. 1991, Hlavka and Livingston 1997,
Jeanjean and Achard 1997) and increases the errors of spatial sampling designs
(Zöhrer 1978, Harrison and Dunn 1993). Thus, there is an increasing interest in
summarizing with quantitative indices the landscape spatial characteristics believed
relevant for the phenomena under study. This allows for an objective comparison of
land cover pattern spatial characteristics. In this context, the development and
measurement of spatial indices for the characterization of land cover thematic pat-
terns has been one of the major topics of recent landscape literature (Iverson 1988,
Milne 1988, O’Neill et al. 1988, Pastor and Broschart 1990, Turner 1990, LaGro
1991, Olsen et al. 1993, Plotnick et al. 1993, HulshoV 1995, Haines-Young and
Chopping 1996, Schumaker 1996, Jaeger 2000). Spatial pattern indices derived from
remotely sensed data are being increasingly used for landscape condition assessment
and land cover change detection (Gulinck et al. 1993, Luque et al. 1994, Frohn et al.
1996, Traub 1997, Sachs et al. 1998, Chuvieco 1999, GriYths et al. 2000, Luque 2000,
Imbernon and Branthomme 2001).

However, land cover data may be obtained from a variety of information sources,
and pattern indices computed on spatial data with diVerent characteristics are not
directly comparable (Turner et al. 1989a) . In addition, the methodologies applied
for remotely sensed image interpretation, processing or classi� cation may strongly
in� uence the spatial characteristics of the land cover data from which spatial metrics
are calculated.

When a land use or land cover map is generated from remotely sensed images
(acquired from either aircraft or spacecraft platforms) , two approaches can be adopted
to extract the information of interest: image interpretation (information is extracted
by a human analyst ) or quantitative analysis based in the use of computers (Richards
1993). When an image interpretation process is undertaken, one of the key issues in
the delineation of discretal areal units on images is the selection of the minimum
mapping unit (MMU) to be employed. This refers to the smallest size area entity to
be mapped as a discrete area. Selection of the MMU determines the extent of detail
conveyed by an interpretation (Lillesand and Kiefer 1994). It allows reducing the
visual and spatial complexity of the information contained in the map, especially
when the information corresponding to the smallest patches is of little or none
interest for the purposes for which the map is developed (Davis and Peet 1977,
Aguiló et al. 1993). Hence, even when a map is obtained by means of digital classi� ers,
often post-classi� cation processing techniques are applied so that regions less than
a present minimal area are removed (Davis and Peet 1977, Imbernon and
Branthomme 2001). Typically, these techniques consist of majority � lters, or some
other similar approaches incorporating threshold values, proximity functions or
connectivity criteria among the pixels; they reduce the salt and pepper appearance
of raw classi� cations and increase the accuracy of classi� ed remotely sensed data
(Thomas 1980, Townsend 1986, Booth and Old� eld 1989, Wilson 1992, Huang and
Mausel 1993, Wang and Kim 1996, Homer et al. 1997 ).

Obviously, the MMU, and the interpretation and image processing techniques
that determine its value, in� uence the spatial characteristics of land cover maps (e.g.
Cain et al. 1997, Gustafson 1998). However, no speci� c study has analysed or
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quanti� ed the eVects of MMU in landscape data con� guration and composition. In
general, landscape research has focused in analysing the eVects of both grain (pixel
size) and spatial extent (the total area of the map being considered), which are
commonly considered the two concepts de� ning the scale of a particular land cover
dataset (O’Neill et al. 1996). Several studies address these issues (Turner et al. 1989b,
Malingreau and Belward 1992, RaVy 1992, Hunsaker et al. 1994, Benson and
MacKenzie 1995, Wickham and Riitters 1995, Frohn et al. 1996, O’Neill et al. 1996,
Saura and MartÌ́ nez-Millán 2001). However, the concepts of spatial resolution (i.e.
pixel size) and minimal areas should not be confused (Davis and Peet 1977,
Goodchild and Quattrochi 1997). Indeed, as it will become apparent later, data with
the same pixel size and spatial extent but diVerent MMU diVer substantially in the
visual and spatial characteristics of the information they convey.

This study analyses the eVects of MMU on several commonly used landscape
con� guration metrics and in land cover data composition by means of simulated
spatial patterns generated by the Modi� ed Random Clusters (MRC) method (Saura
and MartÌ´nez-Millán 2000). This method allows the diVerent factors that in� uence
the behaviour of the landscape indices to be controlled separately, and accounts for
a wide range of land cover con� guration possibilities.

2. Methods
2.1. Simulating landscape patterns with diVerent MMU: the MRC method

The source of spatial information in this study is simulated landscapes generated
by the MRC method (Saura and MartÌ́ nez-Millán 2000). This landscape model
allows simulation of patchy and irregular grid-based spatial patterns with any
number of types that are similar to those commonly found in real landscapes. The
realism of the simulations is demonstrated not only by their patchy and irregular
appearance (� gures 1, 2, 4, 6 and 7), but also because the MRC method can reproduce
the values of spatial metrics measured in real landscapes as a function of habitat
abundance, which is a signi� cant improvement over other commonly used landscape
models (Saura and MartÌ́ nez-Millán 2000). By varying simulation parameters, MRC
provides a continuum variation of the values of landscape metrics values, allowing
a wide range of patterns with intermediate levels of spatial dependence to be obtained,
in which fragmentation and classes abundance can be systematically and independ-
ently controlled. It is a stochastic simulation method, that is, multiple random
realizations can be obtained for the same set of simulation parameters, which diVer
in the location of the classes of the categorical pattern but are similar in their overall
spatial structure.

The main parameter in a MRC simulation is the initial probability p, which
controls the fragmentation of the landscape. Higher values of p (up to an upper limit
pc$0.593) yield bigger and less numerous patches, which results in more aggregated
(less fragmented) patterns (� gure 1). Fragmentation is greatest for p=0, in which
case a simple random map (also called a percolation map) is obtained (� gure 1),
characterized by its complete spatial independence (the habitat type in a speci� c
location is statistically independent of that existing in the neighbourhood locations) .
These simple random maps are too fragmented and are not realistic representations
of landscape patterns (Gardner et al. 1987, 1991, Schumaker 1996, Saura and
MartÌ́ nez-Millán 2000); too low values of p have therefore less interest for landscape
simulation. The increase in the spatial aggregation as a function of p is not linear
but more rapid near pc (� gure 1). MRC method allows simulating patterns with
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anisotropy, but these are not the subject of the present study; in consequence, the
four-neighbourhood criteria was used in step B of the simulation process (Saura and
MartÌ´nez-Millán 2000).

To consider a wide range of landscape composition and con� guration possibilities,
we generated MRC binary (two classes) patterns of size 400×400 pixels with diVerent
fragmentation degrees ( p=0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.525, 0.55 and 0.575) and
classes abundance (A1 ranging from 10 to 90%, with step 10%, where A1 is the
percent of map area occupied by class 1, A2=100  A1 ). Ten diVerent MRC images
were generated for each of those 90 combinations of p and A1 . Figures 1 and 2
illustrate some examples of the diVerent thematic MRC patterns considered in
this study.

According to the simulation steps described in Saura and MartÌ́ nez-Millán (2000),
MRC simulations provide patterns in which there are patches comprising a single
pixel (i.e. MMU=1 pixel ). To analyse the in� uence of MMU in landscape indices,
an image processing algorithm has been applied to each of the 900 MRC simulations,
so that all patches smaller than a certain speci� ed threshold (MMU) are eliminated
(Saura 1998). The algorithm for � xing MMU consists of � nding all patches with
size smaller than MMU and assigning them to the more frequent class in the pixels
surrounding their perimeter. Thus, small patches merge with neighbour patches of
bigger size (� gures 3 and 4). When several small patches contact each other (a set
of neighbour small patches) , the sum of their sizes may be bigger than MMU; in
these cases, all these small patches are merged together in the same patch (� gure 3).

Figure 1. EVect of the initial probability p on MRC simulated patterns; the bigger the value
of p the more aggregated (less fragmented) the patterns result. All the images are
binary (two classes) and sized 200×200 pixels.
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Figure 2. Three MRC patterns generated for the same initial probability ( p=0.52) but with
diVerent abundances of the classes in the pattern. A1 and A2 denote, respectively, the
percent of the map area occupied by the black and white classes. The size of the
images is 200×200 pixels.

In a land cover map, these sets of small patches will be typically assigned to a
heterogeneous class comprising mixes of several diVerent land cover types (e.g. Green
et al. 1993), as is the case of classes 2.4.2 (complex cultivation) or 2.4.3 ( land
principally occupied by agriculture with signi� cant areas of natural vegetation) in
the European CORINE Land Cover Database (Commission of the European
Communities 1993). In the MRC simulations an arbitrary class is assigned to each
of these sets of small patches (� gure 3). The algorithm described above is similar to
post-classi� cation techniques that are often applied in remote sensed image pro-
cessing and intend to remove regions less than a present minimal area (Davis and
Peet 1977, Imbernon and Branthomme 2001). Such techniques commonly consist of
simple majority � lters or other related approaches (Thomas 1980, Townsend 1986,
Booth and Old� eld 1989, Wilson 1992, Huang and Mausel 1993, Wang and Kim
1996, Homer et al. 1997 ).

Applying this algorithm to each of the 900 simulated landscapes (in which initially
MMU=1), the MMU was set to 2, 3, 6, 11, 21 and 41 pixels (which makes a total
of 5400 MRC patterns) . Thus, a broad set of images that were identical except for
their MMU was available, which made it possible to analyse the in� uence of MMU
on pattern indices. Figure 4 shows that varying MMU can have a remarkable eVect
in the appearance of the pattern, which anticipates the quantitative variations that
can be expected in the landscape spatial indices, as will be described later.

Using MRC simulated patterns presents two main advantages over the use of a
particular set of real land cover data. First, it allows the diVerent factors that in� uence
the behaviour of the land cover spatial indices to be controlled separately. That is,
classes abundance, pattern fragmentation and MMU itself can be independently
controlled and � xed, and their eVects on landscape indices conveniently separated.
Li and Reynolds (1994) gave similar arguments, and used simulated categorical maps
because in their experiment it was critical to have good control over heterogeneity
characteristics in the maps. Secondly, the MRC method accounts for a wide range
of landscape con� guration possibilities. This makes it possible to obtain more general
results than those resulting from a particular dataset (Polidori 1994), which may
neither be applicable to other areas with diVerent spatial characteristics nor
comparable with the results of other authors at other study sites. As Qi and Wu
(1996) noted, the eVect of changing scale varies in their magnitude and rate of change
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Figure 3. An example to illustrate the image processing algorithm used to � x a certain MMU
in raster land cover data. Patches smaller than 11 pixels have been removed from the
left pattern (in which MMU=1) by merging small patches with bigger ones sur-
rounding their perimeter. However, when sets of small neighbour patches exist, these
are assigned to a unique patch in the resultant pattern, as is the case of the patch
marked by an X in the image on the right.

when landscape data with diVerent spatial characteristics are used; Turner et al.

(1989b) and O’Neill et al. (1996) obtained similar results. As it will become apparent

later, the eVects of MMU in thematic maps are also dependent on the spatial

characteristics of the pattern under consideration. So, the ability to generate a wide

variety of landscape patterns through the MRC method is particularly useful in the

context of this research. Additional reasons supporting spatial simulation were given

by Li et al. (1993), who used a computer simulation because � eld experimental and

chronological approaches were not feasible due to expense, time requirements, lack

of experimental controls, and diYculties of � nding suitable study sites. Lam (1990)

also stated that images simulating remote sensed data would be especially useful for

benchmark or theoretical studies involving a large number of images. There are

indeed many useful applications of simulated patterns in landscape, spatial modelling

and remote sensing researches (Woodcock and Strahler 1988, Turner et al. 1991,

Gardner et al. 1989, 1991, Palmer 1992, Wilson 1992, Green 1994, Polidori 1994,

Lavorel et al. 1994, With and Crist 1995, Gustafson and Gardner 1996, Li and

Reynolds 1997, With et al. 1997, Bian and Butler 1999, Tischendorf 2001). In

particular, arti� cially generated patterns have been used to develop, evaluate and

compare indices of landscape pattern, as well as to detect correlation between them

(e.g. Turner et al. 1989a, Lam 1990, Li et al. 1993, Plotnick et al. 1993, Li and

Reynolds 1994, Hargis et al. 1998, Saura and MartÌ́ nez-Millán 2001), providing

relevant insights in the understanding of their behaviour.

All the MRC simulations, as well as the � nal images with diVerent MMU,

were generated using SIMMAP (Saura 1998). This software also computes the

spatial indices described in the next section. Computational times required to gen-

erate a typical simulation are, in a 333 MHz PC, less than 1 s for patterns with

200×200 pixels and about 2 s for 400×400 landscapes. A free copy of the soft-

ware can be obtained by contacting the author or directly downloaded from

http://www.udl.es/usuaris/saura.
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Figure 4. Two pairs of MRC patterns with diVerent MMUs. Although patterns have the
same pixel size and spatial extent (200×200 pixels), their visual and spatial character-
istics are clearly aVected by MMU. p=0.57 in the patterns at the top and p=0.5 in
the images at the bottom.

2.2. Analysed landscape con� guration metrics
In this study, 12 spatial con� guration indices are analysed. These indices were

selected because they are commonly used to characterize landscape patterns (e.g.
Iverson 1988, Turner and Ruscher 1988, Turner 1990, Ripple et al. 1991, Luque et al.
1994, Schumaker 1996, Traub 1997, GriYths et al. 2000, Luque 2000, Jaeger 2000,
Tischendorf 2001). No single index can capture the full complexity of the spatial
arrangement of patches, and so a set of indices is frequently evaluated (Dale et al.
1995). Other landscape metrics diVerent from those considered here are also available,
but they are usually combinations of the previous ones or just measure the same
aspect of landscape pattern, being highly correlated with them (Li and Reynolds
1994, Riiters et al. 1995, Cain et al. 1997, Hargis et al. 1998). All the spatial metrics
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were calculated via SIMMAP software for patches of class 1 in each of the binary
simulated patterns (class-level indices); this way it could be explored the in� uence of
MMU for diVerent cases of class abundance (A1 ). The analysed landscape metrics are:

1. Number of Patches (NP). A patch is de� ned by the four-neighbourhood rule:
pixels are considered to belong to the same patch if they are adjacent horizontal or
vertically, but not along the diagonals. This is the criterion adopted by most authors
(e.g. Gardner et al. 1987, Turner 1990, Gardner et al. 1991, Luque et al. 1994, With
et al. 1997, Luque 2000). Number of Patches (NP) is a basic index necessary for the
computation of several other metrics described below, and it is also employed as a
fragmentation indicator (higher NP indicating bigger fragmentation) .

2. Mean Patch Size (MPS). This is a simple and common fragmentation index
( low Mean Patch Size indicates high fragmentation) , given by:

MPS=
æ

i=NP

i= 1
ai

NP
(1)

where ai is the area (number of pixels) of each of the NP patches of the land cover
class of interest.

3. Edge L ength (EL ); an edge is de� ned as any side shared between two pixels
belonging to diVerent classes. Edge Length is regarded as a good indicator of pattern
fragmentation (Li et al. 1993), with more fragmented landscapes yielding higher EL.

4. Inner Edge L ength (IEL ); an inner edge is de� ned as the perimeter of a patch
(or set of patches) that is completely surrounded by pixels of the same class. Inner
Edge Length measures the presence of holes in the patches of the pattern.

5. L argest Patch Index (L PI), expressed as percent of the map occupied by the
largest size patch of the class of interest. This size may limit or aVect many ecological
phenomena (Forman 1995).

6. L andscape Division (L D), Splitting Index (SI) and EVective Mesh Size (EMS).
These three fragmentation indices were recently introduced by Jaeger (2000), and
are all based on the ability of two animals (placed in two randomly chosen positions
within the landscape) to � nd each other if moving only through the analysed land
cover type (when computed at the class-level ). They convey basically the same
information, and their values are closely related, although have diVerent properties
and interpretation (Jaeger 2000). The � rst index, Landscape Division, is de� ned as
the probability that two randomly chosen places in the landscape are not situated
in the same patch of the class of interest. So, higher LD values indicate increased
pattern fragmentation. It is computed as:

LD=1  æ
i=NP

i=1
C ai

ATD
2

(2)

where AT is total landscape area (equal to 160 000 pixels in the case of the patterns
analysed in this study). When computing LD, the biggest patches in the pattern
contribute to the decrease of the total probability in a much bigger proportion than
the smaller ones, as obtained from the squared terms in the sum (2). In particular,
if the largest patch occupies a big proportion of total class area, the contribution of
the rest of the patches to the sum (2) is only minor. In these cases LD may be highly
correlated (although not linearly) with Largest Patch Index. This also applies to the
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Splitting Index (SI ) and EVective Mesh Size (EMS):

SI=
A2

T

æ
i=NP

i=1
a2
i

=
1

1  LD
(3)

EMS=
1

AT
æ
i= n

i= 1
a2
i =

AT
SI

=AT (1 LD) (4)

SI and EMS are, respectively, the number and size of the patches that would result
when dividing the whole landscape in pieces of equal size so that the obtained
pattern presented the same degree of LD than the analysed land cover class (see
Jaeger (2000) for further details). Higher SI or lower EMS indicate a more
fragmented pattern.

The expression of EMS is very similar to that corresponding to the AWMPS
index (Area Weighted Mean Patch Size), which has been used by some authors (e.g.
Wear et al. 1998). Both indices relate by:

EMS=
A1
100

AWMPS (5)

where A1 is the percent of total landscape area occupied by the class of interest.
Therefore, the conclusions obtained in this study regarding EMS are also applicable
to AWMPS. However, EMS has the advantage of being derived from a measure of
fragmentation (LD) that is directly interpretable in ecological terms. When computed
at the landscape level (including all the patches in the landscape in the computation
of the indices, independently of the class they belong to), both indices coincide.

Jaeger (2000) stated that these three indices (LD, SI and EMS) present a low
sensitivity to the omission of small patches. However, no speci� c or quantitative
results were provided, and this is to be tested in this study.

7. Patch Cohesion (PC) Index. The Patch Cohesion Index is, according to the
dispersal model developed by Schumaker (1996), better linearly correlated with
animal populations dispersal success than other commonly used landscape indices.
It is given by:

PC=C1 
æ

i=NP

i= 1
pi

æ
i=NP

i= 1
pi ã aiD C1 

1

ã ATD Õ 1
(6)

where pi and ai are, respectively, the perimeter and the area of each of the NP
patches of the class of interest, and AT is the total landscape area. The PC value is
minimum (PC=0) when all patches of habitat are con� ned to single isolated pixels,
and maximum (PC=1) when every pixel is included in a single patch that � lls the
landscape (Schumaker 1996).

8. Mean Shape Index (MSI) and Area Weighted Mean Shape Index (AWMSI).
Both Mean Shape Index and Area Weighted Mean Shape Index measure the irregu-
larity or complexity of the shapes in the pattern. They attain their minimum value
(MSI=1, AWMSI=1) for perfect square shapes in grid-based data. The diVerence
relies in that AWMSI uses patch area as a weighting factor because larger patches
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are assumed to have stronger eVect on overall landscape structure (Li et al. 1993,
Schumaker 1996). Their expressions are:

MSI=
æ

i=NP

i= 1

pi
4 ã ai

NP
(7)

AWMSI=
æ

i=NP

i= 1

pi
4 ã ai

ai

æ
i=NP

i= 1
ai

=
æ

i=NP

i= 1
pi ã ai

4 æ
i=NP

i=1
ai

(8)

9. Perimeter-Area Fractal Dimension (PAFD). Fractal dimension is a descriptor
of the geometrical properties of those objects that have an invariant scaling behaviour
under certain transformations (Mandelbrot 1983). It can be demonstrated that the
areas and perimeters of a set of objects with similar shapes obey the following
relation (Feder 1988):

p=kaPAFD/2 (9)

where k is a constant and PAFD is the Perimeter-Area Fractal Dimension of the set
of similar shapes. Taking logarithms in both sides of equality (9), PAFD is estimated
as twice the slope of the � tted line of log perimeters (dependent variable) versus log
areas (independent variable) of each of the patches of the land cover class under
analysis. Landscapes have been found not to be perfectly self-similar, at least not
across all ranges of scales (Krummel et al. 1987, Pastor and Broschart 1990, Leduc
et al. 1994, Nikora et al. 1999). However, PAFD has been widely used as a measure
of shapes complexity (Iverson 1988, O’Neill et al. 1988, Turner 1990, Frohn et al.
1996, Traub 1997, Wickham et al. 1997, Hargis et al. 1998, Luque 2000, Peralta and
Mather 2000, Imbernon and Branthomme 2001), with higher values indicating more
complex patterns, and theoretically ranging from 1 up to 2. Other landscape proper-
ties diVerent from the perimeter-area relation considered here can also be analysed
by the theoretical tools that fractal theory oVers (Milne 1988, Korvin 1992, Hargis
et al. 1998, Nikora et al. 1999 ).

SIMMAP software considers perimeter to be the length of the patch outer
boundary; so, inner edges de� ned by small islands embedded inside the patch are
not included. This aVects the four perimeter-dependent indices described before
(MSI, AWMSI, PC and PAFD). Inner edges are considered in a separate spatial
metric (IEL), as described before. However, some software packages for the computa-
tion of landscape indices like FRAGSTATS (McGarigal and Marks 1995), which
has been used in several landscape studies (Traub 1997, Hargis et al. 1998, Sachs
et al. 1998, GriYths et al. 2000) include both concepts in the term ‘perimeter’ (inner
edges and the real perimeter, which are not treated separately) and thus provide
slightly higher values of those indices than the ones considered in this study.

3. Results and discussion
3.1. EVects of MMU on landscape composition

Increasing the minimum mapping area can have a big in� uence on the
composition that is depicted in a categorical map (table 1). In general, the land cover
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types that are sparse in the original pattern (when MMU=1 pixel ) tend to decrease
their abundance when increasing MMU; on the contrary, classes that occupy a big
percentage of the map (A1>50%) tend to become more dominant and increase their
A1 with bigger MMU (table 1). The intensity of this eVect depends on landscape
spatial con� guration; the more fragmented the pattern (lower p), the bigger biases
that are introduced in the real composition by the use of a certain MMU, as shown
in table 1. In particular, land cover types that are rare ( low A1 ) and distributed in
small pieces over the landscape (low p) can be heavily underestimated when � xing
a certain minimum mapping area when making a map. These conclusions are in
agreement with those obtained by Fuller and Brown (1996), in which the data of
the Institute of Terrestrial Ecology Land Cover map of Great Britain (MMU=
0.125 ha) in a study site in Yorkshire were translated into its CORINE equivalent
(MMU=25 ha). Results showed that only one-half of the original deciduous

Table 1. Variations in the abundance of a land cover class caused by the eVect of increasing
the MMU of the spatial data, for diVerent cases of pattern aggregation (as controlled
by p). The ‘true’ abundance is that corresponding to the original pattern in which
MMU=1.

MMU Abundance (%)

p=0
1 10 30 50 70 90
2 3.48 23.48 50.02 76.52 96.54
3 1.35 19.50 49.97 80.50 98.67
6 0.08 11.25 49.93 88.67 99.93

11 0.07 0.36 50.06 94.69 100
21 0.07 0.09 50.24 98.25 100
41 0.07 0.09 48.26 99.52 100

p=0.4
1 10 30 50 70 90
2 9.73 29.74 50.00 70.27 90.28
3 9.56 29.58 49.99 70.43 90.45
6 8.89 28.97 50.00 71.04 91.13

11 7.63 27.74 50.01 72.19 92.40
21 5.69 25.64 49.96 74.41 94.32
41 3.44 22.23 49.93 77.82 96.63

p=0.5
1 10 30 50 70 90
2 9.85 29.83 49.99 70.16 90.15
3 9.76 29.75 49.99 70.24 90.24
6 9.46 29.44 49.98 70.53 90.55

11 8.91 28.92 49.99 71.11 91.11
21 8.07 27.94 50.02 71.96 92.02
41 6.75 26.55 50.06 73.37 93.21

p=0.55
1 10 30 50 70 90
2 9.91 29.92 50.00 70.09 90.10
3 9.86 29.86 50.00 70.13 90.15
6 9.70 29.72 50.00 70.29 90.31

11 9.41 29.42 49.99 70.55 90.58
21 8.95 29.00 50.01 70.99 91.01
41 8.37 28.42 50.00 71.65 91.60
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woodlands, characterized by a dissected pattern in the ITE map, were retained using
the larger MMU corresponding to CORINE. Fuller and Brown (1996) state that
‘the more extensive cover types have been consolidated while rarer features, especially
those that form dissected patterns in the landscape, were either removed, incorporated
into CORINE mosaic classes, or labelled according to the dominant component’.
Similar eVects have been reported when decreasing resolution (increasing grain size)
of grid-based land cover data, either as a result of comparing classi� ed images
corresponding to satellite sensors with diVerent spatial resolutions (Benson and
MacKenzie 1995), or as a result of scaling up by applying majority-based aggregation
rules to certain thematic maps (Turner et al. 1989b, Benson and MacKenzie 1995,
Frohn et al. 1996 ).

Due to these variations that class abundance suVers when varying MMU, the
landscape diversity, measured with indices such as Shannon’s or Simpson’s diversity
indices (O’Neill et al. 1988, McGarigal and Marks 1995), tends to be underestimated
by bigger MMUs, as is readily obtained from table 1.

3.2. EVects of MMU on spatial con� guration
Table 2 lists the mean values of the analysed spatial con� guration indices for

simulated patterns with MMU=1, 3, 11 and 41 pixels for some representative cases
of pattern characteristics (as controlled by p and A1 ). This table shows that the
sensitivity of a particular landscape index to changes in MMU can be very diVerent
depending on landscapes spatial characteristics. In most cases, indices variations are
bigger for less aggregated patterns (smaller p). This is an expected result, since the
more fragmented the pattern, the smaller and more numerous the patches are, and
thus a bigger proportion of the landscape is aVected by removing patches smaller
than a certain minimum mapping area. The sensitivity of a particular index is also
dependent on class abundance (A1 ), as shown in table 2.

Nevertheless, to compare the sensitivity of diVerent spatial indices to MMU,
absolute variations of a particular index (e.g. M11  M1 , where Mx is the value of
the metric for MMU=x) are of little interest, since each of the metrics may have
diVerent ranges of variation (e.g. a decrease of 0.5 in the fractal dimension is a
dramatic change in the pattern, but may be of little relevance in the case of LPI,
which ranges from 0 to 100). Relative variations (i.e. M11/M1 ) are not relevant either
(in the same previous example, a decrease from 1.5 to 1.0 would be considered of
the same relevance for the PAFD than for LPI). To compare the sensitivity of
diVerent spatial metrics in a more appropriate way it is necessary to take into
account their ranges of variation (i.e. (M11 M1 )/R, where R is the range of variation
of the spatial metric). However, not all spatial indices have a de� ned � nite range of
variation, as is the case of AWMSI or MSI, which have not theoretical upper limit.
Furthermore, even when metrics have a well-de� ned theoretical range of variation,
this is frequently a very poor indicator of the range over which the spatial index
really occurs in land cover spatial patterns; for example, PAFD can theoretically
range from 1 to 2, but in the landscape studies where it has been measured it lies in
the vast majority of the cases under 1.5 (Iverson 1988, Turner and Ruscher 1988,
Turner 1990, O’Neill et al. 1996, Traub 1997, Nikora et al. 1999, Luque 2000,
Imbernon and Branthomme 2001, Tischendorf 2001). Another good example is the
Patch Cohesion (PC); this index ranges theoretically from 0 to 1, but generally
attains values over 0.9 when measured in forest cover patterns (Schumaker 1996).
Thus, it is necessary to use an estimate of the real variation of the spatial indices in
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landscape patterns. The MRC simulations account for the values of spatial indices
that have been measured in real patterns as a function of class abundance (Saura
and MartÌ´nez-Millán 2000). As remarked in the Methods section, low values of p
have less interest for landscape simulation; in general, the fragmentation degrees that
are commonly found in most landscape data may be obtained with p " 0.4 (� gure 1).
So, the standard deviation (SD) of each of the landscape metrics for the set of
simulated patterns with p " 0.4 and MMU=1 (540 cases) is used as an estimate
proportional to their range of variation in real land cover patterns. Including all p
values in the computation of SD would, for example, overestimate the variations of
indices like NP, which have much bigger values in the unrealistic case of simple
random maps ( p=0, see table 2) than on real-world landscape patterns. Table 3
shows SD values for the eight analysed landscape metrics. The sensitivity of a spatial
index to changes in map extent (S), for a pattern with a particular degree of
fragmentation ( p*) and class abundance (A*1 ), can be then estimated as:

Sp*,A*1
=100

M11
p*,A*1

 M1
p*,A*1

SD
(10)

where Mx
p*,A*1

is the mean value of the spatial index for the 10 simulated images
with MMU=x, p=p* and A1=A*1 . S values allow for a more adequate comparison
of the sensitivity of the diVerent analysed landscape metrics. S expresses the percent-
age of the index absolute variation due to changes in MMU relative to its overall
range of variation in landscape patterns (as estimated by SD). The nearer S to 0,
the more robust the index is to changes in MMU (from MMU=1 to MMU=11).
Positive S values indicate that the index tends to increase with increasing MMU,
and vice versa. S is computed using MMU=11 because this minimum mapping area
seems adequate to capture and illustrate the typical trends that occur when varying
MMU. Table 4 shows S values for the eight analysed indices and some representative
cases of p and A1 . O’Neill et al. (1996) used in another context a similar expression
for the quanti� cation of landscape indices sensitivity.

By calculating the mean of the absolute values of S corresponding to all A1
values and p " 0.4, a ranking of the overall sensitivity of the analysed indices (Sov )
can be established, as shown in table 5. However, it should be noted that the indices
behaviour can be very variable depending on pattern abundance and fragmentation,
as controlled by p and A1 (tables 2 and 4).

Next, we analyse the particular behaviour of each of the spatial indices. Figure 5
illustrates the typical variations, showing the indices values corresponding to diVerent
MMU for the case p=0.5.

3.2.1. Number of Patches (NP) and Mean Patch Size (MPS)
The main eVect of increasing MMU is that all the patches with sizes smaller

than MMU are ‘lost’ and not included in the � nal map. Both in remote sensing and
landscape researches it has been shown that, although the sum of the areas occupied
by the small patches may represent a small percentage of the total map area, patch
size frequencies distributions are highly left-skewed, and most of the patches in land
cover patterns are small (Harris 1984, Townsend 1986, Gardner et al. 1987, Pastor
and Broschart 1990, Gulinck et al. 1993, HulshoV 1995, Hlavka and Livingston 1997,
Peralta and Mather 2000). Thus, a very large number of small patches may be
‘removed’ from the pattern when increasing MMU, and the mean size of the
remaining patches greatly increases. These eVects make Number of Patches and
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Table 3. Standard deviation (SD) of the analysed spatial pattern indices for p" 0.4 and
MMU=1. These values are used as an estimate proportional to the range of variation
of the corresponding indices in realistic landscape patterns.

Index SD

NP 504.3
MPS 2914.0
EL 12 352.4
IEL 11 250.8
LPI 34.9
LD 0.298
SI 7848.9
PC 0.055
MSI 0.074
AWMSI 2.44
PAFD 0.061

Mean Patch Size two of the most sensible spatial indices of those considered in this
study (tables 2, 4 and 5, � gure 5(a),(b)). Indeed, NP and MPS are quite poor indic-
ators of pattern fragmentation when spatial data coming from diVerent sources of
information, that may not have exactly the same MMU, are to be compared. NP
and MPS have been commonly used to characterize landscape patterns (e.g. Iverson
1988, Turner and Ruscher 1988, Turner 1990, Luque et al. 1994, HulshoV 1995,
Benson and MacKenzie 1995, Sachs et al. 1998). However, they provide undesired
results when comparing land cover data with diVerent MMUs, as illustrated in
� gure 6. These limitations of NP and MPS are likely to be extensible to the compar-
ison of landscape data with the same MMU but diVerent patches sizes frequencies
distribution.

3.2.2. Edge L ength (EL ) and Inner Edge L ength (IEL )
Edge Length values are smaller the bigger the MMU is (tables 2 and 4, � gure 5(c)),

and EL is a quite sensible metric to this respect. Edges corresponding to small
patches are lost, partial or totally, when merged with bigger units surrounding them.
However, the percentage of the total edge length that corresponds to the small
patches is not as big as the percentage of small patches itself; therefore, EL is not
as sensible as NP. In any case, important biases may be introduced by direct
comparison of the EL of patterns with diVerent MMU (table 2), and the eVects
illustrated in � gure 5(c) must be taken into account for an adequate analysis of land
cover patterns.

The overall variations of Inner Edge Length with MMU are less pronounced
than those corresponding to EL (table 5, � gure 5(d )). The presence of inner edges
requires one or several big patches in which the smaller ones can be embedded, and
this occurs mainly when the class abundance (A1 ) is high enough, which makes IEL
variations much bigger in these cases (� gure 5(d ), table 4). Obviously, IEL also tends
to decrease when increasing MMU, as small islands inside dominant patches are
not considered in the output map.

3.2.3. L argest Patch Index (L PI)
Largest Patch Index is one of the most robust index to variations in MMU of

those considered in this study. The biggest patch tends to increase its size with
MMU, as small units near or inside the largest patch are merged with it. However,
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Table 5. Overall sensitivity to MMU (Sov) of the analysed landscape pattern indices,
calculated as the mean of the absolute sensitivity values corresponding to p " 0.4.

Index Sov

NP 81.9
MPS 344.9
EL 45.7
IEL 22.9
LPI 1.83
LD 3.0
SI 0.70
EMS 3.0
PC 14.2
MSI 483.3
AWMSI 3.6
PAFD 197.2

this eVect is not very relevant, and LPI tends to remain relatively stable even with
big MMU (� gure 5(e)), with the exception of too fragmented patterns (tables 2 and
4), which, as stated before, are less likely to be found in real landscapes.

3.2.4. L andscape Division (L D), Splitting Index (SI) and EVective Mesh Size (EMS)
Landscape Division and related indices (SI, EMS, AWMPS) all present a very

low sensitivity to changes in the MMU (tables 4 and 5, � gure 5( f )) ± (h)). Indeed,
these indices are, together with LPI, the least sensitive of those considered in this
study. This low sensitivity to MMU is a consequence of the little weight that is given
to the smallest patches in comparison to the bigger ones, as obtained from the
squared terms in equations (2), (3) and (4). Great variations in the SI as a function
of MMU are only reported when p=0 and class abundance is not high (tables 2
and 4); this is due to the fact that Splitting Index tends to in� nity if all the patches
in the pattern tend to disappear when increasing MMU (equation (3)), which occurs
in the unrealistic case of the very fragmented simple random patterns. As shown in
table 5, the overall sensitivity of EVective Mesh Size is equal to that of LD, since
both indices are linearly related as indicated by equation (4). Therefore, data corres-
ponding to EMS have not been included in tables 2, 3 and 4 to avoid redundancy,
since they are readily obtained from the values of LD.

These results make these three recently introduced indices adequate for comparing
the fragmentation of landscape data with diVerent MMU, as illustrated in � gure 6.
In addition, their potential usefulness as fragmentation metrics (especially the LD
index) is enhanced by their simple interpretability in terms of probability of two
animals � nding each other within the landscape (Jaeger 2000). SI and EMS, which
have the same units as the NP and MPS, can be considered as improved alternative
measures of fragmentation that overcome the limitations of NP and MPS when
MMU or patches sizes distribution is varied.

3.2.5. Patch Cohesion (PC)
The overall variations of Patch Cohesion with MMU are not too pronounced

(� gure 5(i ), table 5). However, PC sensitivity is much higher when class abundance
is sparse (� gure 5(i), table 4). In contrast, when A1 is big, PC is insensitive to changes
in spatial pattern (Gustafson 1998, Saura and MartÌ́ nez-Millán 2000).

In � gure 5(i), illustrating the variations of PC with MMU for p=0.5, we can
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appreciate that when A1=10%, measuring PC in a map with MMU=41 pixels
instead of MMU=1 can lead to estimate PC$0.92 instead of PC$ 0.86. This index
was developed because, according to the dispersal model developed by Schumaker
(1996), it was better linearly correlated with animal populations dispersal success
than other commonly used landscape indices. Let us consider the quantitative
relationship given by Schumaker (1996) between Dispersal Success (DS) and patch
cohesion in old-growth forests in the Paci� c Northwest of the USA:

DS= 2.732+3.559PC (11)

According to this expression, the bias introduced in PC by � xing a MMU of 41
pixels would result in estimating DS=0.54 (for MMU=41 ) instead of DS=0.33 (for
MMU=1). This can be considered a relevant bias that clearly overestimates the
true dispersal success in the analysed area. This example illustrates the importance
of considering the variations of the indices in the context of the phenomena they are
intended to correlate with, either ecological or of another nature. The signi� cance
of a particular variation depends on the phenomena under study and on the kind
of functional relationship that links the pattern index and the analysed process.
Thus, the S and Sov values provided in tables 4 and 5 are only a general quanti� cation
of the indices sensitivity to MMU, and in each particular application a certain
variation in a spatial metric may or may not be considered relevant for the purposes
of the study.

3.2.6. Mean Shape Index (MSI) and Area Weighted Mean Shape Index (AWMSI)
Mean Shape Index is the most sensitive to changes in MMU of those indices

analysed in this paper (� gure 5( j) and tables 4 and 5). The limitation of MSI is that
it weights equally all the patches for the computation of the overall shape index,
independently of their size; the shape of the small patches is not complex (in the
extreme case of a single pixel, it is a perfectly squared shape), while bigger ones tend
to have more irregular and convoluted shapes (Krummel et al. 1987, Pastor and
Broschart 1990). When increasing MMU, many small patches (simple shapes) are
lost, while the bigger ones (more complex shapes) are still present in the pattern;
thus, MSI values greatly increase with MMU (� gure 5( j), table 2).

As a consequence of these intrinsic limitations, MSI provides non-consistent
results when comparing land cover data with diVerent MMU or diVerent patches
sizes frequencies distribution (Saura 1998), as shown in � gure 7. This suggests that
MSI should not be used in further landscape researches, at least when these
limitations are relevant.

In contrast, the Area Weighted Mean Shape Index provides adequate results
when comparing landscape data with diVerent MMU (i.e. probably data coming
from diVerent sources of information) , in accordance to what is expected by simple
visual inspection, as � gure 7 illustrates. Indeed, AWMSI is very robust to changes
in MMU, and its variations are only minor (� gure 5(k), tables 2, 4 and 5). AWMSI
overcomes the limitations of MSI by giving more weight to big patches, those
assumed to be more relevant from both a structural and ecological point of view
(Li et al. 1993, Schumaker 1996). Thus, it is nearly not aVected by the decrease in
the number of small patches that occurs when MMU increases. This clearly advocates
using AWMSI as a measure of overall shapes irregularity for the comparison of
land cover categorical patterns that may have diVerent MMU or patches sizes
distributions. AWMSI is, by far, much less sensitive than MSI or PAFD (table 5).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 5. Values of the analysed pattern con� guration indices corresponding to diVerent
MMUs for p=0.5 as a function of class abundance. MPS and SI values are shown in
logarithmic scale.

3.2.7. Perimeter-Area Fractal Dimension (PAFD)
Perimeter-Area Fractal Dimension increases with MMU (� gure 5(l )), and is a

quite sensitive metric, much more than AWMSI. Benson and MacKenzie (1995)
reported a similar behaviour when coarsening resolution (increasing grain size) of
remote sensed data. Apart from this intrinsic sensitivity to MMU, PAFD has an
additional limitation; as it is obtained by regression techniques, PAFD needs a
suYcient number of patches in the pattern to obtain signi� cant and consistent
estimates. When increasing MMU the number of patches clearly decreases, and so,
mainly when A1 is large, there may not be a suYcient number of patches of the class
of interest to adequately measure this index, even in patterns as big as 400×400
pixels (which is the size of the patterns analysed in this study). Thus, � gure 5(i )
includes only cases in which NP " 20, as well as the data in tables 2, 4 and 5.

4. Conclusions
The measurement of pattern indices from classi� ed remotely sensed images for

the quanti� cation of land cover patterns spatial characteristics is becoming increas-
ingly common, since landscape con� guration and composition in� uence many diVer-
ent phenomena, either ecological or other factors. However, there is a lack of
quantitative knowledge about how these indices are aVected by the characteristics
(e.g. scale) of the spatial datasets under analysis. This implies an uncertainty about
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Figure 6. Two MRC spatial patterns with diVerent MMUs (MMU=11 in the pattern in the
left and MMU=1 in the one in the right) in which several fragmentation indices (NP,
MPS, LD, SI and EMS) have been calculated at the landscape level. The pattern in
the right is clearly less fragmented that the one in the left, but the eVect of diVerent
MMUs makes NP and MPS fail when comparing the fragmentation of these two
patterns. In contrast, LD, SI and EMS are able to indicate adequately that the pattern
in the right is more fragmented, leading to conclusions coherent with those that can
be obtained by simple visual inspection.

Figure 7. Two MRC patterns with diVerent MMUs (MMU=11 in the pattern in the left
and MMU=1 in the one in the right) in which the MSI and AWMSI have been
measured at the landscape level. It can be appreciated that the shapes of the pattern
on the right are much more irregular and elongated than those on the left. However,
MSI fails to recognize this circumstance, and assigns a higher value of the overall
shape index to the pattern in the left. In contrast, AWMSI, by giving more weight in
its computation to the bigger patches, which are more relevant in the overall pattern
structure, provides adequate and reasonable results when the two patterns with
diVerent MMUs are compared.
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to what extent spatial metrics derived from diVerent sources of information are really
comparable, therefore limiting the potential usefulness of these spatial indices.

No study has been previously devoted to analysing the in� uence of MMU in
land cover spatial pattern indices. However, the selection of the MMU to be employed
is one of the key issues in the delineation of discretal areal land cover units from
remotely sensed data, since it will determine the extent of detail conveyed by an
interpretation. When maps are obtained by means of digital classi� ers, post-
classi� cation processing techniques are also often applied so that regions smaller
than a certain area are removed from the � nal map, as described in the Introduction.

To � ll in this gap, this research analyses in a comprehensive manner the in� uence
of MMU on landscape estimates by the use of the MRC simulation method. This
method allows realistic simulations of landscape patterns to be obtained, and the
main factors that in� uence the spatial indices behaviour to be thoroughly control
(class abundance, pattern fragmentation, and MMU itself ). A set of MRC images
were generated covering a wide range of land cover pattern possibilities that were
identical except for their MMU. This made possible a quantitative analysis of the
eVects of MMU in landscape data spatial characteristics.

It is shown that land cover composition can be signi� cantly aVected by MMU.
Land cover classes that are sparse and distributed in small pieces over the landscape
can be heavily misrepresented in the � nal map when increasing MMU, while the
classes that occupy a large percentage of map area tend to become more dominant
with bigger MMU. This can lead to a biased representation of the abundance of the
diVerent land cover classes, with the potential danger of drawing erroneous conclu-
sions in those applications where land cover maps are commonly used as a basic
information input. In addition, landscape diversity tends to be underestimated in
maps with a bigger MMU.

With regard to spatial con� guration, Number of Patches and Mean Patch Size,
which have been frequently used in landscape patterns analysis, are very sensitive to
MMU, and are considered very poor indicators of landscape fragmentation in this
context. In contrast, the recently introduced Landscape Division index and the other
two closely related metrics (SI and EMS) are found to be very suitable for comparing
patterns with diVerent MMUs. In addition, their usefulness as fragmentation indices
is emphasized due to their direct interpretability in terms of the ability of two animals
to � nd each other within the analysed land cover class. The Largest Patch Index
can be also compared with nearly no need for correction when measured in patterns
with diVerent MMUs (e.g. possibly data coming from diVerent sources of informa-
tion), and is also one of the most robust indices to changes in MMU of those
considered in this study. The variations that the Patch Cohesion index suVers with
MMU suggest that the animal populations dispersal success can be signi� cantly
overestimated in maps with a large MMU.

Mean Shape Index does not allow for a reliable comparison of shapes complexity
when patterns with diVerent MMU, or with diVerent patch sizes frequencies distribu-
tions, are analysed. Indeed, Mean Shape Index is the most sensitive to MMU of
those considered in this study. The Perimeter-Area Fractal Dimension also suVers
great variations when MMU changes. In contrast, Area Weighted Mean Shape Index
is remarkably stable in this respect, suggesting the use of this metric for the quanti-
� cation of the overall irregularity of the shapes de� ned by land cover patches.

The results presented in this study allow quanti� cation of the biases that are to
be expected by selecting a certain MMU when generating a land cover map from
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remotely sensed data. These biases have to be considered when assessing the ecolo-
gical conditions of landscapes from remotely sensed data; in particular, both land-
scape diversity and fragmentation are underestimated in maps with a large MMU,
whereas animal population dispersal success rates are overestimated. Basis and
guidelines have been provided for proper use and comparison of spatial pattern
indices measured in maps with diVerent MMUs.
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