Sensitivity of Landscape Pattern Metrics to
Map Spatial Extent

Santiago Saura and Javier Martinez-Millan

Abstract

Computation of landscape pattern metrics from spectrally
classified digital images is becoming increasingly common,
because the characterization of landscape spatial structure
provides valuable information for many applications. How-
ever, the spatial extent (window size) from which pattern
metrics are estimated has been shown to influence and
produce biases in the results of these spatial analyses. In this
study, the sensitivity of eight commonly used landscape
configuration metrics to. changes in map spatial extent is
analyzed using simulated thematic landscape patierns
generated by the modified random clusters method. This
approach makes it possible to control and isolate the different
factors that in-fluence the behavior of spatial pattern metrics,
as well as taking into account a wide range of landscape
configuration possi-bilities. Edge Density is found to be the
most robust metric and is recommended as a fragmentation
index where the effect of spatial extent is concerned. The
metrics that attempt to quantify the irregularity and
complexity of the shapes in the pattern (Mean Shape Index,
Area Weighted Mean Shape Index, and Perimeter Area Fractal
Dimension) are by far the most sensitive. In particular, it is
suggested that the Mean Shape Index should be avoided in
further landscape studies. For the eight analyzed pattern
metrics, quantitative guidelines are provided to estimate the
systematic biases that may be introduced by the use of a given
extent, so that the metric values derived from data of different
spatial extents can be properly compared.

Introduction

The development and measurement of spatial metrics for the
characterization of land-cover patterns has been one of the
major topics of landscape literature in recent years (e.g., O’Neill
et al., 1988; Turner, 1990; LaGro, 1991; Olsen et al., 1993; Dill-
worth et al., 1994; Frohn et al., 1996; Haines-Young and Chop-
ping, 1996; Schumaker, 1996; Traub, 1997; Sachs et al., 1998;
Chuvieco, 1999; Schuft et al., 1999). Landscape spatial configu-
ration influences ecological processes such as biodiversity or
animal population dispersal and abundance (e.g., Wilcox and
Murphy, 1985; Andrén, 1994; Forman, 1995; Kareiva and Wen-
nergren, 1995) and phenomena such as the classification accu-
racy of remotely sensed data (Campbell, 1981; Cross et al.,
1991; Hlavka and Livingston, 1997; Jeanjean and Achard, 1997)
or the efficiency and errors of sampling strategies (Zohrer, 1978;
Harrison and Dunn, 1993). There is, therefore, increasing inter-
est in summarizing the landscape spatial characteristics that
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are believed relevant to the phenomena under study, using
quantitative metrics which allow for an objective comparison
of patterns in spatial or temporal scales. The spatial features of
interest may be those relating to fragmentation, complexity,
size, and shape of the patches, etc. In this context, satellite
images make it possible to gather consistent and complete spa-
tial data for very large areas (Sachs et al., 1998) and may be con-
sidered a very useful tool for measuring landscape patterns,
because they provide a digital mosaic of the spatial arrange-
ment of land covers (Chuvieco, 1999).

However, when estimating landscape pattern metrics,
methodological problems often arise, making it difficult to com-
pare spatial metrics derived from different regions or sources of
information (Turner ef al., 1989a). Caution must be exercised
in order to make meaningful comparisons and detect to what
degree variations in metrics are really related to significant
changes in the patterns under study, and not to artifacts derived
from the methodological problems involved in their measure-
ment (e.g., Leduc et al., 1994; Wickham et al., 1997). This uncer-
tainty associated with metric estimates is arguably one of the
major limitations on the expansion of this kind of quantitative
analysis of land cover spatial patterns.

An important problem when comparing land-cover pat-
terns is the scale of the analyzed spatial data, because this has
been shown to greatly influence values of pattern metrics. Scale
comprises both grain and extent (Turner et al., 1989b; O’Neill
et al., 1996). Grain is the spatial resolution of the data, and is
defined by the pixel size. Spatial extent is the total area of the
map being considered. The influence of grain size in landscape
pattern metrics has been described by several authors (e.g.,
Turner et al., 1989b; Benson and MacKenzie, 1995; Wickham
and Riitters, 1995; Frohn et al., 1996). Less attention has been
devoted to the problem of spatial extent, although there have
been some studies (Turner et al., 1989b; Hunsaker et al., 1994;
O'Neill et al., 1996). In these previous studies, map spatial
extent has been shown to be a factor influencing the values of
spatial pattern metrics, but a comprehensive analysis of these
effects has not been reported to date, and great caution is gener-
ally recommended when comparing patterns with different
spatial extents (Turner et al., 1989a). Landscape ecology litera-
ture does not provide much guidance on how to sample land-
scape patterns, and pattern metrics may be particularly diffi-
cult to estimate from a spatial subset (Hunsaker et al., 1994). As
Qi and Wu (1996) state, although it is well known that chang-
ing spatial scale will somehow affect the results of spatial anal-
ysis, the questions regarding “how” and “why” remain largely
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unanswered, and systematic investigations to address such
issues are urgently needed.

There is a need to compare spatial patterns corresponding
to landscapes of different extent. First, and more importantly,
because subsets of a particular landscape have to be analyzed in
order to evaluate the distribution of the spatial characteristics
of interest over the landscape (e.g., Olsen et al., 1993; O°Neill et
al., 1996), e.g., to detect areas of high diversity or where the
habitat is more endangered because of loss of connectivity, or to
identify areas where the classification accuracy of satellite
imagery is likely to be reduced because of pattern dissection
and subsequent increase in spectrally mixed pixels (e.g., Jean-
jean and Achard, 1997). Also, the boundaries of the units under
study may not be purposefully defined but imposed by adminis-
trative or natural constraints, which results in data sets with
different areas. In other cases, economic or computational limi-
tations may make it impossible to measure spatial metrics for
the whole landscape (e.g., Sachs et al., 1998). In all these cases,
itis necessary to know how the extent of the analyzed pattern
is going to influence the results of metric estimations, and
whether the obtained values are comparable with those corres-
ponding to different extents or to the entire region under analy-
sis. Furthermore, even if all the patterns are of equal extent, the
biases in metric values that may be introduced by measuring
them over a particular limited spatial extent are of special con-
cern when these metrics are intended to correlate with vari-
ables that have a direct physical or ecological interpretation
(e.g., Zoehrer, 1978; Schumaker, 1996).

In this study, the sensitivity of eight commonly used land-
scape patterns metrics to map extent is analyzed using simu-
lated spatial patterns generated by the modified random
clusters method (Saura and Mart{nez-Milldn, 2000).

Methods

Landscape Pattern Simulation: The Modified Random Clusters Method

The source of spatial information in this study is simulated land-
scapes generated by the Modified Random Clusters method
{Saura and Mart{nez-Millén, 2000). This method (MRC hereafter)
allows simulation of patchy and irregular grid-based thematic
spatial patterns with any number of classes that are similar to
those commonly found in real landscapes. The realism of the
simulations is demonstrated not only by their patchy and irregu-
lar appearance (Figures 1, 2, and 3), but also by the fact that the
values of pattern metrics measured in real landscapes as a func-
tion of class abundance can be reproduced with the MRC method
(Saura and Martinez-Milldn, 2000)—a significant improvement
on other commonly used landscape models. By varying simula-
tion parameters, MRC can provide a continuum variation of land-
scape metric values, allowing the user to obtain a wide range of
patterns with intermediate levels of spatial dependence, in
which fragmentation and abundance of land-cover classes can
be systematically and independently controlled.

The main simulation parameter in the MRC method is the
initial probability p, which controls the fragmentation of the
simulated landscapes. The higher p is (up to an upper limit of
Pc=0.593), the bigger and less numerous the patches are, and
hence the more aggregated (less fragmented) are the resulting
patterns (Figure 1). Fragmentation is greatest when p = 0, in
which case a simple random map (also called a percolation
map) is obtained (Figure 1), characterized by its complete spa-
tial independence (the habitat class in a specific location is sta-
tistically independent of that existing in the neighborhood
locations). These simple random maps are too fragmented and
are not realistic representations of landscape patterns (Gardner
etal., 1987; Gardner et al., 1991; Schumaker, 1996; Saura and
Martinez-Milldn, 2000); too low values of p have less interest
for landscape simulation. The increase in the spatial aggrega-
tion as a function of p is not linear but is more rapid near p,
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Figure 1. Some examples of MRC simulated patterns for
different values of p (parameter that controls pattern frag-
mentation) and class abundances (A)). All patterns are binary
(two classes) and their size is 200 by 200 pixels.

(Figure 1). MRC is a stochastic simulation method; that is, multi-
ple realizations can be obtained for the same set of simulation
parameters, which differ in the location of the pixels in the pat-
tern but are similar in their overall spatial structure (Figure 2).

- In order to analyze the influence of spatial extent in land-
scape metrics, binary (two classes) MRC landscapes were gener-
ated for linear map extents of L = 400, L = 300, L = 200, L, = 100,
and L= 50 pixels (where L is the linear dimension of the square
raster map and L? is the total number of pixels in the raster). To
take into account a wide range of landscape configuration pos-
sibilities, the percent of the area of the map occupied by class 1
(A1, A, = 100 ~— A,) was varied from 10 to 90 percent (10 per-
cent steps), and p was assigned values of 0, 0.1, 0.2, 0.3, 0.4,
0.45, 0.5, 0.525, 0.55, and 0.575, yielding a total of 90 different
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Figure 2. Four MRC stochastic realizations obtained for the
same set of simulation parameters (p = 0.5, A; = A, =
50 percent, 300 by 300 pixels). They differ in the exact
location of pixels in the pattern but are similar in their overall
spatial structure.

spatial configurations for which the effect of spatial extent was
analyzed: Some examples of these spatial configurations are
shown in Figure 1. To obtain statistically robust mean values for
each of those cases, ten replications were generated for the map
size L = 400, equaling 1.6 X 10° pixels of sample size for each of
the 90 combinations of p and A, for this map spatial extent. To
make the estimates of the spatial metrics equally significant for
all L values, in each case the necessary number of replications
were made to obtain the same number of pixels (e.g., for L =
100, 160 simulations were made for each of the combinations
of p and A, values). All the MRC simulations were generated
using SIMMAP (Saura, 1998), a software which also computes
the spatial metrics that are described in the next section. In the
latest version of SIMMAP computational times required to gen-
erate a typical simulation in a PC at 333 MHz are less than one
second for patterns with 200 by 200 pixels, and two seconds
for 400- by 400-pixel images. Those interested in SIMMAP can
contact the author asking for a free-of-charge copy of this
software. ‘

'For the analysis of the effect of spatial extent in landscape
metrics, independent realizations were used (Figure 3) in order
to assure the statistical independence of the estimates corres-
ponding to different L values. A nested sampling over the same
landscape could not be used because it would not be possible to
set the same abundance of classes in the different sub-win-
dows of the original pattern (which is particularly obvious
when the pattern is more aggregated). Class abundance greatly
influences the results of landscape metrics, as will become
apparent later in this paper (Figure 4 and Tables 1 and 3) and has
been reported by many authors (e.g., Gustafson and Parker,
1992; Traub, 1997; Hargis ef al., 1998). Therefore, a study in
which class abundance was not specifically controlled would
be of limited interest, because the variations of the spatial con-
figuration indices for different map extents would be blurred by
the variations in class abundance. In previous analyses of the
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Figure 3. MRC realizations generated for the same set of
simulation parameters (p = 0.5, Ay = 25 percent, A, =
75 percent) but with different spatial extents (L = 400, 200,
100, and 50, where L2 is the total number of pixels in the
images). These realizations may be thought of as samples
of different size in a pattern with the same overall spatial
characteristics.

influence of spatial extent in landscape metrics (Turner et al.,
1989b; O’Neill et al., 1996; Hunsaker ef al., 1994), the effects of
class abundance and spatial extent were mixed, making it diffi-
cult to extract clear or concrete conclusions about the behavior
of the studied indices in this respect. In this paper, the MRC
method made it possible to obtain patterns in which map
extent (L) is varied but class abundance (A;) and fragmentation
( p) are held constant for the different L values. MRC simula-
tions obtained for the same p and A, values but different map
extents (L) may be thought of as samples of different size in a
pattern with similar overall spatial structure (Figure 3). In this
way we can estimate whether a spatial metric is sensitive to the
spatial extent, and what biases are to be expected from the use
of a given limited extent.

The use of simulated MRC patterns instead of real-world
landscape data is preferable in this study because with this
approach it is possible to purposefully control and isolate the
different factors that affect pattern metric behavior (Li and
Reynolds, 1994). The influence of class abundance, fragmenta-
tion, and spatial extent can be adequately separated, and thus
the sensitivity of metrics to map extent can be specifically ana-
lyzed, avoiding confusion with other land-cover data charac-
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teristics. Also, several authors have noted that the effect of
changing scale varies in magnitude and rate of change when
landscape data with different spatial characteristics are used
(Turner et al., 1989b; O’'Neill et al., 1996; Qi and Wu, 1996).
Indeed, the results of analysis of the landscape patterns of a
concrete area may be neither applicable to other areas with dif-
ferent spatial characteristics not comparable with the results of
other authors at other study sites. That is to say, the use of some
particular landscape data could limit the scope of application
of the obtained results (Polidori, 1994). On the other hand,
with the MRC method, a large number of images can be gener-
ated, taking into account a wide range of pattern configuration
possibilities. It therefore provides a theoretical background
against which the metrics behavior in particular land-cover
data sets can be readily predicted and understood.

Analyzed Landscape Pattern Configuration Metrics
In this study, the behavior of eight spatial pattern configuration
metrics is analyzed. These metrics were selected because they
are commonly used to characterize landscape spatial patterns
(e.g., Turner, 1990; Ripple et al., 1991; Luque ef al., 1994;
Haines-Young and Chopping, 1996; Traub, 1997). No single
metric can capture the full complexity of the spatial arrange-
ment of patches, and so a set of metrics is frequently employed
(Dale et al., 1995). Other landscape metrics are also available,
but they are usually combinations of the previous ones or mea-
sure the same aspect of landscape pattern, being highly corre-
lated with them (Riitters et al., 1995; Hargis et al., 1998). Spatial
metrics were calculated for patches of class 1 in each of the
binary simulated patterns, using SIMMAP software (Saura,
1998).

‘The eight analyzed landscape metrics are

® Patch Density (PD%)

PD* = 1000 %’ 1)

where NP is the number of patches of the class of interest in a map
with I? pixels. A patch is defined in SIMMAP by the four-neigborhood
rule (pixels are considered to belong to the same patch if they are
adjacent horizontal or vertically, but not along the diagonals). PD*
can theoretically vary between 0 and 1000, because L? is the maxi-
mum possible number of patches that can appear in the whole
landscape in grid-based landscape data of linear dimension L.

® Edge Density (ED*)

EL
% = _—
ED* = 100 ;" 2)

where EL is the total edge length of all patches of interest; edges
are defined as any shared side between two pixels belonging to
different classes (edges defined by the map border are not included).
ED% can range from 0 to 100 (it is simple to demonstrate that
2:L+(L — 1) is the maximum edge length that can appear in raster
maps of linear dimension L) and, like PD%, is considered to be a
good indicator of pattern fragmentation (Li et al., 1993).

® Inner Edge Density (IED%)

IEL
2:-L:(L—1)

where IEL is the total inner edge length of all patches of interest;
inner edges are defined as those edges that are completely sur-
rounded by pixels of the same class. IED* measures the presence
of holes in landscape patches. It is expressed as-a percentage with
respect to the maximum edge length that can appear in grid-based
data (2-L+(L — 1)); however, EL = IEL and, in general, values for
IED* much nearer to 0 than to 100 are clearly to be expected.

IED* = 100 (3)

The expressions given above for PD%, ED%, and IED% in
grid-based data are preferable because their values are adimen-
sional, not depending on the specific units of the particular
data set under consideration (Saura, 1998). The expressions
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given by other authors to quantify these aspects of landscape

pattern (e.g., measuring edge density in m/ha (Li et al., 1993) or

km/ha (Hargis et al., 1998)) are related to those used in this

study by a simple proportional rule.

¢ Largest Patch Index (LPI), calculated as the percentage of map area
occupied by the largest size patch of the class of interest. The size

of the largest patches in the landscapes may limit or affect many
ecological phenomena (Forman, 1995).

® Patch Cohesion (PC) Index (Schumaker, 1996),

i=NP.
2 Pi 117
PC=|1- -[1———] (4)
i= Lz
ShJa Vi

where p; and q; are, respectively, the perimeter and the area of each
of the patches of the class of interest. Patch perimeter is defined in
SIMMAP as the length of the patch outer boundary; so, inner edges
defined by small islands embedded inside the patch are not included
(this also applies to the three pattern metrics described below). PC
value is minimum (PC = 0) when all patches of habitat are confined
to single isolated pixels, and maximum (PC = 1) when every pixel
is included in a single patch that fills the landscape (Schumaker,
1996). According to the dispersal model developed by Schumaker
(1996), this index seems to correlate better with animal populations
dispersal success than other commonly used landscape metrics.

® Mean Shape Index (MSI) )

i=NP Pi
i

12:14-\/3,-

NP

MSI =

® Area Weighted Mean Shape Index (AWMSI)
NP i=NP
,;4\/?.% ;p""/a—i
AWMST = L 6)

a; 4 - 2 a;
= =

i=NP

where p; and q; are, respectively, the perimeter and the area of each
of the patches of the class of interest. Both MSI and AWMSI are
intended to measure the irregularity or complexity of the shapes
in the pattern, and they attain their minimum value (MSI=1, AWMSI
= 1) for perfect square shapes in grid-based data. However, AWMSI
uses patch area as a weighting factor because larger patches are
assumed to have more effect on overall landscape structure (Li et
al., 1993; Schumaker, 1996). MSI values given by Equation 5 are
simply proportional to those provided by several other commonly
used shape indices (Zohrer, 1978; Davis, 1986; Chuvieco, 1999)
which are based on comparison of the perimeter-to-area ratio of a
given shape with that of a circle.

® Perimeter-Area Fractal Dimension (PAFD)
Fractal dimension is a descriptor of the geometrical properties of
those objects that have an invariant scaling behavior under certain
transformations (Mandelbrot, 1983). It can be demonstrated that the
perimeters and areas of a set of objects with similar shapes obey
the following relation (Feder, 1988):
. PAFD

p=k-a? (7)
where k is a constant and PAFD is the Perimeter-Area Fractal Dimen-
sion of the set of similar shapes. Taking logarithms in both sides of
Equation 7, and assuming self-similarity, PAFD is estimated as twice
the slope of the fitted line of perimeters (dependent variable) versus
areas of each of the patches of the land-cover class under analysis.
PAFD theoretically ranges between 1 and 2, with higher values indi-
cating more complex shapes (O’Neill et al., 1988; Turner, 1990;
Frohn et al., 1996; Hargis et al., 1998).

Results and Discussion

General Behavior of the Pattern Metrics

Table 1 shows the mean values of the spatial metrics for pat-
terns of'size L = 400, 200, and 100 for some representative val-
ues of class abundance (A,) and pattern fragmentation (as
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TaBLE 1.  MEAN VALUES OF THE LANDSCAPE PATTERN METRICS OBTAINED WITH THREE DIFFERENT MAP EXTENTS (L = 400, 200, AND 100), FOR SOME REPRESENTATIVE
CASES OF CLASS FRAGMENTATION { p) AND CLASS ABUNDANCE (A1). SYMBOLS TO THE RIGHT OF THE METRICS MEAN VALUES FOR L = 200 anp L = 100
INDICATE WHETHER THE DIFFERENCE FROM THE MEAN CORRESPONDING TO L = 400 IS SIGNIFICANT AT A 95 PERCENT PROBABILITY LEVEL (+), AT A 50 PERCENT
ProBABILITY LEVEL {*), oR NON-SIGNIFICANT (NO MARK) AS DETERMINED BY t-TEST. SEE THE SUBSECTION ON ANALYZED LANDSCAPE PATTERN CONFIGURATION
METRICS FOR DESCRIPTION OF METRIC NAMES AND EQUATIONS.

p = 0.55

p=105

p=04

p=20

Class Abundance (%)

Class Abundance (%)

Class Abundance (%)

Class Abundance (%)

L 20 50 80 20 50 80 20 50 80 20 50 80

400 4.175 3.246 0.934 7.056 3.708 0.552 12.763 4.794 0.262 121.774 66.978 1.543

Ppe 200 4.181 3.151 * 0.937 6.907 3.942* 0598 * 13.158 * 5.061 * 0.335 + 121.751 67.553 *  1.593
100 4.068 3.386 1.081 * 6.887 4.308 + 0.696 * 13.367 * 5.875 + 0.438 + 122.325 * 69.540 + 1.853 +

400 5.441 8.691 5.307 7.739 11.977 7.680 10.911 17.041 10.967 31.993 50.042 32.039

ED* 200 5.603 * 8.557 * 5.483 * 7.665 12.073 * 7.723 10.943 17.044 10.924 31.967 49.979 * 32.055

100 5.661 * 8.379 * 5.556 * 7.646 11.890 7.607 10.923 17.040 10.857 31.961 50.000 32.027

400 0.357 2.259 4.045 0.148 2.988 6.852 0.042 2.906 10.363 0.001 1.052 31.128
IED* 200 0.297* 1715+ 3.583* 0.124* 2171+ 6.238 + 0.036 2.699 * 9.841 + 0.000 1.049 30.560 +
100 0.268 * 1.249 + 2,582 + 0.113 * 1604 + 5.055+ 0.031* 2.030 + 8.763 + 0.001 1.051 29.323 +

400 2.382 25.227 79.532 0.719 22.436 80.283 0.185 15.912 80.624 0.012 0.261 79.785

LPI 200 4.618 + 31.493 + 79.196 * 1.868 + 25.571 * 80.121 * 0.565 + 23.062 + 80.616 0.037 + 0.845 + 79.753

100 8.453 + 34.256 + 78.318 * 3.979 + 29.102 + 79.850 * 1.640 + 23.779 + 80.535 0121 + 2.290 + 79.747

400 0.949 0.992 0.999 0.904 0.992 0.999 0.827 0.988 0.999 0.285 0.818 0.999
PC 200 0.945* 0.989 + 0.998 + 0.902 0.986 + 0.999 + 0.824* 0.985 * 0.999 + 0.285 0.819 0.998 +
100 0.941 0.983 0.997 0.900 * 0.979 + 0.998 0.824 0.975 0.998 0.283 0.814 * 0998 +

400 1.201 1.198 1.119 1.221 1.247 1.097 1.217 1.351 1.086 1.046 1.289 1.019
MSI 200 1.221 + 1.231+ 1152+ 1.229* 1,295 + 1,142+ 1.214* 1.372* 1.144 + 1.046 1.287 *  1.035 +
100 1.251 + 1.274 + 1.241 + 1.238 + 1.337 + 1.286 + 1.213* 1.418+ 1337+ 1.046 * 1.282 * 1.086 +

400 2.474 6.807 2.636 1.994 8.983 2.255 1.620 10.502 2.046 1.118 2.671 2.172

AWMSI 200 2.378 * 4.828 + 2433 * 1.936* 5822+ 2.269 1.587 + 7.809 + 1.977 * 1.118 2.658 2.166

100 2.131 + 3.069 + 2,216 + 1.865* 3.815 + 2.133* 1.576* 4730+ 1.974* 1.1156 * 2.565 + 2.165

400 1.222 1.244 1.183 1.229 1.280 1.158 1.232 1.338 1.133 1.295 1.488 1.153

PAFD 200 1.227 * 1.256 + 1.176 * 1.228 * 1.293 + 1.161 1.228 *  1.340 1.134 1.296 1.487 *  1.156
100 1.227 1.247 1.176 1.227 1.290 *  1.159 1.227 *  1.349 * 1.167 1.294 1.483 + 1.174 +

controlled by p). Significant variations with map extent were
reported in most cases (Table 1), The variations of the pattern
metrics depend, as expected, on landscape spatial characteris-
tics (p and A,). It can be appreciated in Table 1 that absolute
variations of metrics are generally more pronounced when the
pattern is not too fragmented (i.e., big p), although there are
exceptions. Indeed, when the pattern is more aggregated, vari-
ability occurs on a larger scale, and so a bigger map extent is
required to capture the transitions or edges between classes in
the landscape and to appropriately define patches shapes. For
example, when A, = 50 percent, the differences between the
IED* and AWMS]Ivalues corresponding to L = 400 and L = 100
are 160 (IED%*) and 48 (AWMSI) times bigger for p = 0.5 than
for p = 0 (when p = 0, a percolation map is obtained in the MRG
method), as shown in Table 1. So, the sensitivity to map extent
of some pattern metrics analyzed by Gardner et al. (1987) using
percolation maps can clearly underestimate the variations to
be expected in real landscape patterns. This relationship
between fragmentation and sensitivity to spatial extent was
noted by O’Neill et al. (1996), who found different variations in
landscape metrics for three analyzed regions, and stated that
the smaller sensitivity in one of the study areas was probably
due to the fact that it was “a highly dissected area, something
like a checkerboard. The smaller sampling unit seems adequate
to capture the basic pattern under these circumstances” (p. 178).
The sensitivity of a spatial metric to changes in map extent
(8), for a class with a particular degree of fragmentation ( p*)
and abundance (Af), can be estimated using the following
expression, equivalent to that used by O’Neill et al. (1996):

400 .

— 100 «
phay — Mptia;
Spea; = 100

3D (8)

where M. 4 is the mean value of the spatial metric for the set
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of simulated images with L = x, p = p*,and A, = Af. SDisthe
standard deviation of each of the landscape metrics for the set
of simulated patterns with p = 0.4 and L = 400. SD is used as
an estimate proportional to the range of variation of the metrics
in landscape patterns. As noted in the Methods section of this
paper, low values of p are of less interest to landscape simula-
tion; in general, the degrees of fragmentation commonly found
in most landscape data may be obtained with p = 0.4 (Figure 1).
Including all p values in the computation of SD would cause
overestimation of the range of variation of metrics such as Patch
Density, which have much larger values in the unrealistic case
of simple random maps ( p = 0, see Table 1) than in real-world
landscape patterns. SD values for the eight analyzed landscape
metrics are shown in Table 2. Equation 8 allows a better com-
parison of the sensitivity values of the different analyzed land-
scape metrics. S expresses the percentage of the metric varia-
tion due to changes in map extent relative to the overall range
of variation in landscape patterns (estimated by SD). The nearer
S is to 0, the more robust the metric is to changes in spatial

TABLE 2. STANDARD DEVIATION (SD) OF THE EIGHT ANALYZED SPATIAL METRICS
FOR p = 0.4. THESE VALUES ARE USED AS AN ESTIMATE PROPORTIONAL TO
THE RANGE OF VARIATION OF THE CORRESPONDING METRICS IN LANDSCAPE

PATTERNS.

Index SD
PD* 3.169
ED% 3.876
IED% 3.501
LPI 34.807
PC 0.056
MSI 0.072
AWMSI 2.418
PAFD 0.062
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TABLE 3. SENSITIVITY (S) OF THE EIGHT ANALYZED PATTERN METRICS TO MAP EXTENT, FOR DIFFERENT CASES OF FRAGMENTATION (p) AND CLASS ABUNDANGE (Ag)-
THE HIGHER THE ABSOLUTE VALUE OF S IS, THE MORE SENSITIVE IS THE LANDSCAPE METRIC. POSITIVE VALUES OF S INDICATE THAT THE METRIC TENDS TO
DECREASE WITH DECREASING MAP SIZE AND VICE VERSA.

p = 0.55 p =05 p=04 p=0
Class Abundance (%) Class Abundance (%) Class Abundance (%) Class Abundance (%)
20 50 80 20 50 80 20 50 80 20 50 80
PD%* 3.392 -4.,398 —4.634 5.325 —18.932 —4.536 —19.070 -34.116 —b.541 -—-17.374 —80.854 —9.781
ED% —5.668 8.044 —6.414 2.392 2.255 1.881 —0.302 0.034 2.841 0.828 1.091 0.330
IED% 2.588 29.111 42.345 1.009 39.878 52.411 0.319 25.455 47.589 —0.002 0.249 57.839
LPI —17.443 —25.940 3.486 —9.366 —19.150 1.246 —4.180 —22.602 0.256 —0.314 —5.829 0.111
PC 13.951 17.484 2.795 7.059 22.623 2.166 4.879 23.590 1.860 2.913 6.399 1.963
MSI —68.531 -103.555 —167.853 —22.929 —124.316 —273.823 5.710 —91.948 —344.137 0.833 9.232 -—92.255
AWMSI 14.172 154.585 17.394 5.345 213.663 5.018 1.808 238.666 2.947 0.098 4.380 0.270
PAFD ~7.010 —4,195 11.089 3.506 —16.745 —-2.712 8.242 —-16.585 —55.367 1.498 9.137 34,708

extent (from L = 400 to L = 100). Positive values of S indicate
that the metric, even when landscape configuration and com-
position remain similar, tends to increase with increasing map
extent, and vice versa. The values of S for the eight analyzed
metrics and some representative cases of p and A, are shown in
Table 3.

By calculating the mean of the S absolute values contained
in Table 3 for each of the landscape metrics, a ranking of the
overall sensitivity of the analyzed metrics can be established,
as shown in Table 4. However, it should be noted that this is
only a comparison of their overall sensitivity, and that the
behavior of the metrics can vary widely for particular land-
scape configurations.

Individual Behavior of the Eight Analyzed Metrics

Patch Density

Although not a very sensitive metric (Table 4), Patch Density
generally tends to increase with smaller map extents (Figure
4a). This systematic bias is due to the fact that patch density is
higher near the edges than far from them, because of the pres-
ence of small pieces of patches that are cut by map border (in
smaller maps, edges influence a larger proportion of the pat-
tern). These “cut” patches may belong to a bigger patch or could
even be interconnected if the pattern were sampled over a big-
ger extent. This latter effect is stronger the more convoluted or
dendritic patch shapes are. In this sense, a clear relationship
exists between S values for PD* (Table 3) and PAFD values
(Table 1) for the different pand A, combinations and L = 400; a
regression of those 90 pairs of values with a second-degree
polynomial yields R? = 0.76 (R?is under 0.2 when either MSI
or AWMSI are used instead of PAFD). So, the bigger p is, the less
sensitive PD* will be to changes in spatial extent (Table 3).

Edge Density

Edge Density remains very stable when map extent is varied
(Figure 4b, Table 1), with only minor variations. Indeed, ED% is

TABLE 4.  OVERALL SENSITVITY (S,,) OF THE EIGHT ANALYZED PATTERN METRICS,
CALCULATED AS THE MEAN OF THE ABSOLUTE SENSITIVITY VALUES
CORRESPONDING TO p = 0.4,

Index Sov

PD* 10.70
ED% 5.52
IED% 30.56
LPI 11.94
PC 10.75
MSI 132,10
AWMSI 53.27
PAFD 33.69
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the most robust spatial metric of those considered in this study
(Table 4). As shown in Table 1, all the differences in the mean
ED% values obtained for different spatial extents are non-signifi-
cant at a 95 percent probability level. Edge Density measured
over maps of different extent can be directly compared with lit-
tle need for concern about the biases that may be introduced
(note that edges defined by map borders are not included). This
clearly speaks for the use of Edge Density as a fragmentation
metric when these effects are of particular concern.

Inner Edge Density

Inner Edge Density is much more sensitive to changes in map
extent than is ED™, especially for high occupancy percentages
(A, around 70 percent), as shown in F igure 4c. This is because
the presence of holes (inner edges) in the pattern requires big
patches in which smaller ones can be embedded (for high A,,
one big patch (matrix) occupies most of the landscape area).
Forall landscape spatial configurations, IED* tends to decrease
when map size decreases (Tables 1 and 3).

Largest Patch Index

LPIvariations with spatial extent are found to be significant for
many landscape pattern characteristics (Table 1), although the
overall sensitivity of this metric is not very great (Table 4). LPI
tends to increase when map extent decreases if class abun-
dance is not high (under 60 percent), because a patch of a given
size occupies a bigger percentage of the total area in a map of
smaller spatial extent. Conversely, when class abundance is
high, the largest patch tends to expand throughout the land-
scape whatever the extent (similar to the spanning cluster that
appears in simple random maps for p > p, (Gardner et al., 1987;
With and Crist, 1995)). In these cases, LPI variations are much
smaller, although LPIincreases slightly with map extent (Table
3, Figure 4d). '

Patch Cohesion Index

The Patch Cohesion metric is fairly robust to changes in map
extent (Figure 4e, Table 4). As usual, sensitivity is higher for
bigger p values (Table 3). Variability is very low when the pat-
tern occupies most of map area, because PCis much less sensi-
tive to changes in landscape spatial configuration when class
abundance is high (Saura and Martinez-Mill4n, 2000). PG was
introduced by Schumaker (1996) because this metric seems to
have a better linear correlation with simulated population dis-
persal success than do other commonly used landscape met-
rics. Schumaker provided the following quantitative relation-
ship between the patch cohesion index and the simulated dis-
persal success rate (DS) in old-growth forests in the Pacific
Northwest of the USA:
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Class abundance (%)

DS = —2.732 + 3.559 - PC.

There is one question that may arise when attempting to
measure this particular phenomenon from forest-cover data:
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(9)

what is the bias introduced in the estimation of dispersal suc-
cess by measuring patch cohesion over a certain limited map
extent? If, for example, the forest pattern occupies 20 percent of
the landscape and is similar to that obtained for p = 0.5, esti-
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mated DS would be reduced from 0.485 to 0.471 by measuring
it over 100 by 100 images instead of over 400 by 400 images
(PG™® = 0.900 and PC*® = 0,904, Table 1). If this bias is consid-
ered unimportant, it would be possible to reduce sample size
(and associated costs) 16-fold, because there is a theoretical
background that justifies the use of this smaller extent. How-
ever, it should be noted that, as shown in this study, not all land-
scape metrics are as robust as patch cohesion to changes in
map extent (Table 4). In any case, this example illustrates that
the importance of a certain change in a spatial metric depends
upon its relation with the phenomena that the metric is in-
tended to quantify. It is this that determines whether a particu-
lar bias that may be introduced by limited spatial extent is
important or not for the processes under study.

Mean Shape Index

Mean Shape Index is by far the most sensitive metric of those
analyzed in this study (Table 4). Indeed, variations in MSIval-
ues as a function of L are significant and very large for most
landscape configurations (Figure 4f, Tables 1 and 3). In addi-
tion, these variations occur in the opposite direction to that
expected for a metric intended to quantify the irregularity of
the shapes in the pattern; the smaller the map is, the bigger the
MSIvalues are. However, it is clear that bigger patches tend to be
more complex in shape (Krummel et al., 1987); several authors
have noted the increase in shape irregularity with map extent
{Hunsaker et al., 1994; O'Neill et al., 1996). The high sensitivity
of MSIand its behavior, opposite to that expected for an overall
shape metric, suggest that it should no longer be used to quan-
tify this aspect of landscape pattern. The underlying limitation
of this metric is that it weights equally all the patches for the
computation of a shape index for the whole pattern. Smaller
patches (at the ultimate extreme, a single pixel) tend to have
low shape index values, whereas bigger patches have higher
values. When the map size decreases, the number of small
patches decreases more or less proportionally to the number of
pixels in the map. However, the number of big patches may be
reduced very slightly or even remain constant (e.g., for high A,,
the spanning patch (matrix) will always be present and would
always yield one big patch for all L values). So, when map
extent decreases, there is a large reduction in the number of
small patches (low values of shape index), and contrariwise,
there is a small reduction in the number of large patches (the
patches with more irregular shapes). As a consequence, the
mean of the shape indices of all the patches clearly tends to
increase when the map extent decreases, and MSItends to be
more sensitive the bigger p and A, are (Table 3).

Area Weighted Mean Shape Index

These limitations of MSI may be avoided by AWMSI, which
uses patch area as a weighting factor, because larger patches are
considered to be more relevant in the pattern from both a struc-
tural and an ecological point of view (Li et al., 1993; Schu-
maker, 1996). Indeed, AWMSIis much less sensitive than is MSI
to changes of extent (Table 4). However, it is not a robust metric
and, in fact, is the most sensitive after MSI. The irregularity of
the shapes in the pattern is a very difficult aspect to quantify
and is much more sensitive to map extent than are other aspects
of landscape pattern, requiring a much larger extent for robust
estimation. AWMSI is much more sensitive for A, around 50
percent, as shown in Figure 4g, because that is when the more
complex MRC patterns (as measured by AWMSI) are produced,
and hence it is when the shapes are more truncated by the edge
effect of reducing map size. In all cases, AWMSIvalues decrease
when map extent decreases (Table 3).

Perimeter-Area Fractal Dimension

Of the metrics intended to quantify the irregularity of the
shapes in the pattern, PAFD is the least sensitive (Table 4 and
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Figure 4h), possibly as a consequence of the invariant scaling
behavior of this metric in self-similar patterns. Thus, PAFD is
superior to MSI and AWMSI in this respect, although it also
exhibits relatively high sensitivity to map extent (Table 4). It
should be noted that, as estimated by regression techniques,
measurement of PAFD requires a sufficient number of patches
in the pattern, which may not be guaranteed in maps of small
spatial extent. In fact, for L = 50, no valid or coherent estimates
could be obtained for PAFD, or for L = 100 when A, = 90 per-
cent (note that these cases are not included in Figure 4h). In
any event, in all other cases PAFD was adequately estimated
and seems to be more robust to changes in spatial extent than
are MSI or AWMSI. Depending on landscape spatial configura-
tion, PAFD tends either to increase or decrease with map
extent; its behavior is quite irregular in this respect.

Conclusions

The use of landscape pattern metrics for the characterization
of spatial structure from classified remotely sensed data is
becoming increasingly common. This kind of pattern analysis
provides important information for many applications,
including landscape pattern change and assessment of eco-
logical conditions (e.g., Frohn et al., 1996; Sachs et al., 1998;
Chuvieco, 1999; Schufft et al., 1999). However, several
authors have noted that the spatial extent over which the
metrics are calculated considerably influences the results of
these analysis (Turner et al., 1989a; Turner et al., 1989b; Hun-
saker et al., 1994; O’Neill et al., 1996). This produces uncer-
tainty as to the robustness and reliability of the estimated
metric values and limits the comparability of the spatial
structure of patterns whose extent is different.

In this study, the effect of map spatial extent on selected
landscape pattern metrics was analyzed more comprehen-
sively and systematically than in previous studies. This was
thanks to the use of MRC simulated thematic patterns, which
make it possible to control and isolate the different factors
that influence the behavior of landscape metrics, and to
obtain spatial data in which pattern characteristics can be
kept constant while varying spatial extent. In addition, by var-
ying the simulation parameters, many different landscape
pattern possibilities can be generated and analyzed.

The sensitivity of metrics to map extent is highly depen-
dent on pattern spatial characteristics. The sensitivity of
metrics tends to increase with aggregation of the landscape,
although there are some exceptions to this general rule. Some
metrics tend to decrease with decreasing map extent, as in the
case of Inner Edge Density, Patch Cohesion, or Area Weighted
Mean Shape Index, while the behavior of others (Patch Den-
sity, Mean Shape Index) is the reverse. Edge Density is the
most robust metric of those considered in this study, and is
clearly suitable for use as a fragmentation index where the
effect of map spatial extent is a concern. Other metrics that are
not too sensitive to map spatial extent are Patch Cohesion
and Patch Density. On the other hand, metrics which attempt
to quantify the irregularity or complexity of the shapes in the
pattern (Mean Shape Index, Area Weighted Mean Shape
Index, and Perimeter-Area Fractal Dimension) are by far the
most sensitive. Of these, the Perimeter-Area Fractal Dimen-
sion is the most robust to map spatial extent, although proper
estimation requires a sufficient number of patches in the ana-
lyzed pattern. The behavior of Mean Shape Index is contrary
to what might be expected from a metric intended to quantify
the overall irregularity of landscape shapes; it is also clearly
the most sensitive to map spatial extent of those considered in
this study. All of this suggests that the Mean Shape Index
should not be used for comparison among landscape studies.

The results of this study provide a good quantification of
the magnitude of the systematic biases to be expected when
landscape metrics are calculated from maps of a given extent.
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For example, consider two land-cover data sets in which the
forest class occupies 50-percent of the area in both cases, but
with different sizes (L, = 200, L, = 400), and different esti-
mated spatial metrics (PD} = 3.1, AWMSI, = 4.8, PD}¥* = 3.7,
AWMSI, = 6.2). At first glance, pattern 2 might be said to have
more irregular shapes and a higher degree of fragmentation
than pattern 1, on which basis, for example, a higher ecologi-
cal value or degree of vulnerability might be assigned to pat-
tern 2. However, Table 1 shows that, when measured with a
map extent of L = 400 instead of L = 200, the increase in
AWMSIin an MRC pattern with spatial characteristics similar
to pattern 1 (p = 0.55, A; = 50 percent) may be expected to be
as much as 6.8, thus invalidating the initial impression that
pattern 2 is more irregularly shaped than 1; in fact, the oppo-
site seems to be the case. The variation in patch density is
clearly significant, thus allowing one to concludethat pattern
2 is really more fragmented than pattern 1. These guidelines
constitute a valuable methodological tool for landscape pat-
tern analysis and change detection techniques from spec-
trally classified remote sensed data, which are increasingly
being used.

In conclusion, the quantitative guidelines provided may
make it possible to compare pattern metrics derived from
data of different extents, and hence to determine whether the
differences in the correspondlng metrics are really related to
significant changes in the analyzed patterns or they are due to
the intrinsic sensitivity of landscape configuration metrics to
map spatial extent.
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