Variación de entropía del universo


Desde el punto de vista de la Termodinámica, el universo es el conjunto constituido por un sistema y sus alrededores. Es, por tanto, un sistema aislado (no hay nada fuera de él). De la misma manera en que se puede calcular la variación de entropía de un sistema termodinámico entre dos estados, puede calcularse la variación de entropía de sus alrededores (todo lo que ha interaccionado con nuestro sistema). La suma de ambas magnitudes se denomina variación de entropía del universo.

Como el universo es un sistema aislado, utilizando el teorema de Clausius se tiene que, para el universo:

Donde el signo igual es aplicable para una transformación reversible y el signo menor que cuando dicha transformación es irreversible. A continuación se analiza cada caso por separado.

Transformación irreversible

En el siguiente diagrama p - V se ha representado un ciclo irreversible.

Está constituido por dos transformaciones: la AB (representada en verde en la figura), que es irreversible, y la BA (en rojo) que es reversible. Como el ciclo en su conjunto es irreversible, debemos aplicar el teorema de Clausius con el signo menor:

La integral de línea que aparece en la ecuación anterior puede ser descompuesta en la suma de las integrales evaluadas en cada etapa del ciclo, quedando:

Ya que la integral evaluada a lo largo del tramo reversible es precisamente la variación de entropía entre los estados B y A. Por tanto,

Expresión conocida como desigualdad de Clausius.

El significado físico de esta ecuación es que la variación de entropía entre dos estados cualesquiera será siempre mayor que la integral del calor intercambiado irreversiblemente entre los dos estados partido por la temperatura.

Como aplicación de esta expresión, la variación de entropía en la expansión libre de Joule ha de ser mayor que cero (como efectivamente lo es) ya que el calor intercambiado en esta transformación irreversible es cero.

Como el universo es un sistema aislado, cuando en el universo se produce una transformación cualquiera AB irreversible el calor intercambiado es cero, por lo que:

Es decir, la entropía del universo siempre crece para cualquier transformación irreversible que se produzca.

Transformación reversible

Cuando en el universo tiene lugar una transformación reversible, debemos tomar el signo igual:

Agrupando ambos resultados:

Esta afirmación constituye un nuevo enunciado del Segundo Principio:


La entropía es una función de estado que, evaluada para todo el universo, aumenta en una transformación irreversible y permanece constante en una transformación reversible.